- 1. Let $f(x) = x^3 9x$ for all $x \in \mathbb{R}$. Find the
 - (a) Zeros of f, f', f''.
 - (b) Identify regions where: f is positive; f^\prime is positive; and $f^{\prime\prime}$ is positive.
 - (c) Identify: Critical points ; inflection points; regions where the graph is concave up and down
 - (d) Draw a rough-sketch of graph of f
- 2. Let $f(x) = x^4 25x^2 + 144$ for all $x \in \mathbb{R}$. Find the
 - (a) Zeros of f, f', f''.
 - (b) Identify regions where: f is positive; f' is positive; and f'' is positive.
 - (c) Identify: Critical points ; inflection points; regions where the graph is concave up and down
 - (d) Identify $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$
 - (e) Draw a rough-sketch of graph of f

3. Let
$$f(x) = \begin{cases} \frac{x}{(x+3)(x-5)} & x \in \mathbb{R} \setminus \{-3,5\} \\ 0 & x \in \{-3,5\} \end{cases}$$
 Find the

- (a) Identify $\lim_{n \to \infty} f(-3 + \frac{1}{n})$, $\lim_{n \to \infty} f(-3 \frac{1}{n})$, $\lim_{n \to \infty} f(5 + \frac{1}{n})$, $\lim_{n \to \infty} f(5 \frac{1}{n})$
- (b) Identify the domain of f^\prime and $f^{\prime\prime}$
- (c) Zeros of f, f', f''.
- (d) Identify regions where: f is positive; f' is positive; and f'' is positive.
- (e) Identify: Critical points; inflection points; regions where the graph is concave up and down
- (f) Identify $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$
- (g) Draw a rough-sketch of graph of f