Due: Thursday April 15, 2021, 10pm

Problems to be turned in: 2,3

1. Let $\{X_k\}_{k\geq 1}$ be i.i.d. X with $\mathbb{P}(X=1) = \frac{1}{2} = \mathbb{P}(X=-1)$. Suppose $S_0 = 0, S_n = \sum_{i=1}^n X_i$ and let

 $J = \min\{n \ge 1 : S_n = -a\} \text{ for } a \in \mathbb{N} \cup \{0\}$

be a stopping time with respect to the filtration \mathcal{A}_n of observable events with regard to $\{X_i\}_{i\geq 1}$

- (a) For $\theta \in \mathbb{R}, n \ge 1$, let $Z_n = \frac{\exp(\theta S_n)}{(\cosh(\theta))^n}$. Show that Z_n is a martingale.
- (b) Show that, when $\theta < 0$, the martingale $Z_{\min\{n,J\}}$ is a bounded martingale.
- (c) Show¹ that for $0 < \alpha < 1$, one has

$$\mathbb{E}[\alpha^J] = \left(\frac{1 - \sqrt{1 - \alpha^2}}{\alpha}\right)^a.$$

- (d) Let a = 1, calculate $\mathbb{P}(J = n)$ for all $n \in \mathbb{N}$.
- 2. Let $\{X_k\}_{k\geq 1}$ be a sequence of i.i.d. X such that $p = \mathbb{P}(X=1) = 1 \mathbb{P}(X=-1)$ with $0 \leq p < \frac{1}{2}$. Let $S_n = \sum_{i=1}^n X_i$.
 - (a) Show that $\mathbb{P}(\bigcup_{n>1} \{S_n \ge k\}) = \mathbb{P}(\bigcup_{n>1} \{S_n \ge 1\})^k$
 - (b) Let $x = \mathbb{P}(\bigcup_{n \ge 1} \{S_n \ge 1\})$. Show that x solves $x = p + (1-p)x^2$ and find x
 - (c) Show that $\frac{p}{1-p} = \exp(-r^*)$ where r^* is the unique positive root of $\mathbb{E}[e^{rX}] = 1$. Thus conclude that the optimised Chernoff bound is satisfied with equality.
- 3. (Galton-Watson Process) For $n \ge 1$, let $\{X_k^n\}_{k\ge 1}$ be i.i.d. X with range of X being in $\mathbb{N} \cup \{0\}$ and $m = \mathbb{E}[X]$. Define a sequence Z_n by, $Z_1 = 1$ and for $n \ge 2$,

$$Z_n = \sum_{i=1}^{Z_{n-1}} X_i^n,$$

with the sum being interpreted as 0 if $Z_{n-1} = 0$.

- (a) Show that $\frac{Z_n}{m^n}$ is a martingale.
- (b) Show that $P(Z_n > 0) \le m^n$ and conclude that if $\mu < 1$ then that the Galton-Watson Process dies out, i.e $\mathbb{P}(Z_n > 0$ infinitely often) = 0.

¹You may use the Bounded convergence theorem: namely if $\{X_n\}_{n\geq 1}$ are a sequence of bounded random variables and $X_n \to X$ with probability 1 then $\mathbb{E}[X_n] \to \mathbb{E}[X]$

Book-Keeping Exercises

- 1. Soha the gambler with an initial finite capital of r > 0 rupees starts to play on the Siva rupee slot machine. At each play, either her rupee is lost or is returned with some additional number of rupees. Let X_i be her change of capital on the *i*th play. Assume that $\{X_k : i \ge 1\}$ is i.i.d. X with X taking on integer values $\{-1, 0, 1, ...\}$. Assume that $\mathbb{E}[X] < 0$. Soha plays until losing all her money (i.e., the initial r rupees plus subsequent winnings).
 - (a) Let J be the number of plays until Soha loses all her money. Is the weak law of large numbers sufficient to argue that $\mathbb{P}(J < \infty) = 1$ or is the strong law necessary?
 - (b) Assume that X is bounded and using Chernoff bound show that $\mathbb{E}[J] < \infty$. In this case find $\mathbb{E}[J]$ using Wald's identity.
- 2. Let $\{X_k\}_{k\geq 1}$ be a sequence of i.i.d. $\exp(\lambda)$ and let $S_n = \sum_{i=1}^n X_i$.
 - (a) Show that for all $a > \frac{1}{\lambda}$, the optimal Chernoff bound is given by

$$P(S_n \ge na) \le (a\lambda)^n e^{-n(a\lambda - 1)}.$$

- (b) Show that $\mathbb{P}(S_n \ge na) = \sum_{i=0}^{n-1} \frac{(na\lambda)^i e^{-na\lambda}}{i!}$.
- (c) Use Stirling's formula to show that

$$\frac{(a\lambda)^n e^{-n(a\lambda-1)}}{\sqrt{2\pi n}(a\lambda \exp(\frac{1}{12n}))} \le P(S_n \ge na) \le \frac{(a\lambda)^n e^{-n(a\lambda-1)}}{\sqrt{2\pi n}(a\lambda-1)}$$

3. (Discrete Fubini Theorem-1) Suppose for $n \ge 1$, $f_n, f: X \to \mathbb{R}$ and $f_n \to f$ uniformly on a set K in a metric space (X, d). Let x be a limit point of K. Suppose

$$\lim_{t \to x} f_n(t) = A_n$$

for all $n \ge 1$. Then

- (a) $\lim_{n\to\infty} A_n = A$ for some $A \in \mathbb{R}$.
- (b) $\lim_{t\to x} f(t) = A$.
- (c) $\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t)$

For solution see Walter Rudin, Principle of Mathematical Analysis: Theorem 7.11 Page 149.

4. (Discrete Fubini Theorem-2) Suppose for $m, n \ge 1$, $\{a_{mn}\}$ be a sequence of real numbers.

If
$$\sum_{m=1}^{\infty} \sum_{k=1}^{\infty} |a_{mk}| < \infty$$
 then $\sum_{m=1}^{\infty} \sum_{k=1}^{\infty} a_{mk} = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} a_{km}$

For solution see Joel Feldman Notes at : http://www.math.ubc.ca/ feldman/m321/twosum.pdf