Due: Thursday April 8, 2021, 10pm

Problems to be turned in: 2,4

1. Consider a martingale where Z_{n} can take on only the values 2^{-n-1} and $1-2-n-1$, each with probability $\frac{1}{2}$.
(a) Given that Z_{n}, conditional on Z_{n-1}, is independent of $Z_{n-2}, Z_{n-3}, \ldots, Z_{1}$ find $E\left[Z_{n} \mid Z_{n-1}\right]$ for each n so that the martingale condition is satisfied.
(b) Show that $\mathbb{P}\left(\sup _{n \geq 1} Z_{n} \geq 1\right)=\frac{1}{2} \neq 0=\mathbb{P}\left(\bigcup_{n \geq 1}\left\{Z_{n} \geq 1\right\}\right)$
(c) Show that for all $\epsilon>0, \mathbb{P}\left(\sup _{n \geq 1} Z_{n} \geq a\right) \leq \frac{E\left[Z_{1}\right]}{a-\epsilon}$.
2. Let Y be an random walk on \mathbb{Z}^{d} starting at $y \in \mathbb{Z}^{d}$ and $X: \mathbb{N}_{0} \rightarrow \mathbb{Z}^{d}$. Let $Z_{i}, i \in \mathbb{N}_{0}$, be i.i.d. Bernoulli random variables with mean q. Define the stopping time

$$
\tau:=\min \left\{i \geq 0: Y(i)=X(i), Z_{i}=1\right\}
$$

Show that

$$
\mathbb{P}_{y}^{Y}(\tau \leq n)=1-\mathbb{E}_{y}^{Y}\left[(1-q)^{\sum_{i=0}^{n} 1_{\{Y(i)=X(i)\}}}\right]
$$

3. Let $\left\{N_{y}\right\}_{y \in \mathbb{Z}^{d}}$ be i.i.d. Poisson random variables with mean ν and let $S(\cdot)$ be a simple random walk starting at 0 and $\left\{Y_{j}^{y}(\cdot)\right\}_{y \in \mathbb{Z}^{d}, 1 \leq j \leq N_{y}}$ be a collection of independent random walks having the same distrbution as $S(\cdot)+y$. Let

$$
\xi(n, x):=\sum_{y \in \mathbb{Z}^{d}, 1 \leq j \leq N_{y}} \delta_{x}\left(Y_{j}^{y}(n)\right)
$$

Let $X: \mathbb{N} \cup\{0\} \rightarrow \mathbb{Z}^{d}$ with $X(0)=0$. Show that

$$
\sigma^{X}(n)=\mathbb{E}^{\xi}\left[(1-q)^{\sum_{i=0}^{n} \xi(i, X(i))}\right]=\exp \left\{-\nu \sum_{y \in \mathbb{Z}^{d}} w^{q, X}(n, y)\right\}
$$

where

$$
w^{q, X}(n, y):=1-\mathbb{E}_{y}^{Y}\left[(1-q)^{\sum_{i=0}^{n} 1_{\{Y(i)=X(i)\}}}\right]
$$

and under \mathbb{E}_{y}^{Y} the random walk Y has the same distribution as $S(\cdot)+y$.
4. Let X be a random variable such that $\mathbb{P}(X=1)=\frac{1}{4}$ and $\mathbb{P}(X=-1)=\frac{3}{4}$.
(a) Let $\phi(t)=\mathbb{E}\left[e^{t X}\right]$ for all $t \in \mathbb{R}$. Show that there is $\tau>0$ such that

$$
\inf _{t \in \mathbb{R}} \phi(t)=\rho, \quad \phi(\tau)=\rho, \quad \phi^{\prime}(\tau)=0
$$

(b) Let X_{i} for $i \geq 1$ be i.i.d. X and $S_{n}=\sum_{i=1}^{n} X_{i}$ with $S_{0}=0$. Using Chebychev inequality, show that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq 0\right) \leq \log (\rho)
$$

(c) Let \hat{X} be a random variable with distribution function given by the Cramer transform of X. Namely

$$
\mathbb{P}(\hat{X} \leq x):=\frac{1}{\rho} \mathbb{E}\left[e^{\tau X} 1(X \leq x)\right]
$$

i. Show that $\mathbb{E}[\hat{X}]=0$ and $\operatorname{Var}[\hat{X}]=1$.
ii. Let $\hat{S}_{n}=\sum_{i=1}^{n} \hat{X}_{i}$ then for any $C>0$,

$$
\mathbb{P}\left(0 \leq \frac{\hat{S}_{n}}{\sqrt{n}} \leq C\right) \leq \frac{\mathbb{E}\left[e^{-\tau \hat{S}_{n}} 1\left(\hat{S}_{n} \geq 0\right)\right]}{e^{-\tau C \sqrt{n}}}
$$

iii. Show that $\mathbb{P}\left(S_{n} \geq 0\right)=\rho^{n} \mathbb{E}\left[e^{-\tau \hat{S}_{n}} 1\left(\hat{S}_{n} \geq 0\right)\right]$
iv. Conclude that

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq 0\right) \geq \log (\rho)
$$

(d) Discuss (b) and (c) with the perpsective of Large Deviations for S_{n}.
(e) Extra Credit: Can you adapt the above proof to show that for any $a>-\frac{1}{2}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq a n\right)=\inf _{t \in \mathbb{R}}\{a t-\log (\phi(t))\}
$$

5. Let $\left\{X_{k}\right\}_{k \geq 1}$ be i.i.d Bernoulli $\left(\frac{1}{2}\right)$ and $S_{n}=\sum_{k=1}^{n} X_{k}$. For $a<\frac{1}{2}$, find $\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \leq\right.$ an $)$
