Due: Thursday April 8, 2021, 10pm

Problems to be turned in: 2,4

- 1. Consider a martingale where Z_n can take on only the values 2^{-n-1} and 1-2-n-1, each with probability $\frac{1}{2}$.
 - (a) Given that Z_n , conditional on Z_{n-1} , is independent of $Z_{n-2}, Z_{n-3}, \ldots, Z_1$ find $E[Z_n | Z_{n-1}]$ for each n so that the martingale condition is satisfied.
 - (b) Show that $\mathbb{P}(\sup_{n\geq 1} Z_n \geq 1) = \frac{1}{2} \neq 0 = \mathbb{P}(\bigcup_{n\geq 1} \{Z_n \geq 1\})$
 - (c) Show that for all $\epsilon > 0$, $\mathbb{P}(\sup_{n \ge 1} Z_n \ge a) \le \frac{E[Z_1]}{a \epsilon}$.
- 2. Let Y be an random walk on \mathbb{Z}^d starting at $y \in \mathbb{Z}^d$ and $X : \mathbb{N}_0 \to \mathbb{Z}^d$. Let $Z_i, i \in \mathbb{N}_0$, be i.i.d. Bernoulli random variables with mean q. Define the stopping time

$$\tau := \min\{i \ge 0 : Y(i) = X(i), Z_i = 1\}.$$

Show that

$$\mathbb{P}_{y}^{Y}(\tau \leq n) = 1 - \mathbb{E}_{y}^{Y} \left[(1-q)^{\sum_{i=0}^{n} 1_{\{Y(i)=X(i)\}}} \right].$$

3. Let $\{N_y\}_{y\in\mathbb{Z}^d}$ be i.i.d. Poisson random variables with mean ν and let $S(\cdot)$ be a simple random walk starting at 0 and $\{Y_j^y(\cdot)\}_{y\in\mathbb{Z}^d,1\leq j\leq N_y}$ be a collection of independent random walks having the same distribution as $S(\cdot) + y$. Let

$$\xi(n,x) := \sum_{y \in \mathbb{Z}^d, 1 \le j \le N_y} \delta_x(Y_j^y(n)).$$

Let $X : \mathbb{N} \cup \{0\} \to \mathbb{Z}^d$ with X(0) = 0. Show that

$$\sigma^X(n) = \mathbb{E}^{\xi} \left[(1-q)^{\sum_{i=0}^n \xi(i,X(i))} \right] = \exp\Big\{ -\nu \sum_{y \in \mathbb{Z}^d} w^{q,X}(n,y) \Big\},\$$

where

$$w^{q,X}(n,y) := 1 - \mathbb{E}_y^Y \Big[(1-q)^{\sum_{i=0}^n \mathbb{1}_{\{Y(i)=X(i)\}}} \Big],$$

and under \mathbb{E}_{y}^{Y} the random walk Y has the same distribution as $S(\cdot) + y$.

- 4. Let X be a random variable such that $\mathbb{P}(X=1) = \frac{1}{4}$ and $\mathbb{P}(X=-1) = \frac{3}{4}$.
 - (a) Let $\phi(t) = \mathbb{E}[e^{tX}]$ for all $t \in \mathbb{R}$. Show that there is $\tau > 0$ such that

$$\inf_{t \in \mathbb{R}} \phi(t) = \rho, \qquad \phi(\tau) = \rho, \qquad \phi'(\tau) = 0$$

(b) Let X_i for $i \ge 1$ be i.i.d. X and $S_n = \sum_{i=1}^n X_i$ with $S_0 = 0$. Using Chebychev inequality, show that

$$\limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge 0) \le \log(\rho)$$

(c) Let \hat{X} be a random variable with distribution function given by the Cramer transform of X. Namely

$$\mathbb{P}(\hat{X} \le x) := \frac{1}{\rho} \mathbb{E}[e^{\tau X} \mathbb{1}(X \le x)]$$

- i. Show that $\mathbb{E}[\hat{X}] = 0$ and $\operatorname{Var}[\hat{X}] = 1$. ii. Let $\hat{S}_n = \sum_{i=1}^n \hat{X}_i$ then for any C > 0,

$$\mathbb{P}(0 \le \frac{\hat{S}_n}{\sqrt{n}} \le C) \le \frac{\mathbb{E}[e^{-\tau \hat{S}_n} \mathbf{1}(\hat{S}_n \ge 0)]}{e^{-\tau C \sqrt{n}}}$$

iii. Show that $\mathbb{P}(S_n \ge 0) = \rho^n \mathbb{E}[e^{-\tau \hat{S}_n} \mathbb{1}(\hat{S}_n \ge 0)]$

iv. Conclude that

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge 0) \ge \log(\rho)$$

- (d) Discuss (b) and (c) with the perpsective of Large Deviations for S_n .
- (e) Extra Credit: Can you adapt the above proof to show that for any $a > -\frac{1}{2}$

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge an) = \inf_{t \in \mathbb{R}} \{at - \log(\phi(t))\}$$

5. Let $\{X_k\}_{k\geq 1}$ be i.i.d Bernoulli $(\frac{1}{2})$ and $S_n = \sum_{k=1}^n X_k$. For $a < \frac{1}{2}$, find $\lim_{n\to\infty} \frac{1}{n} \log \mathbb{P}(S_n \le an)$