2. Let $V=\mathbb{Z}^{2}$ and $E=\{\{\mathbf{i}, \mathbf{j}\}: \mathbf{i}, \mathbf{j} \in V$ and $\|\mathbf{i}-\mathbf{j}\| \leq \sqrt{2}\}$ with $\|\cdot\|$ denoting the euclidean norm. Consider the standard weight function $\mu \equiv 1$ on E. Let $\left\{X_{n}\right\}_{n \geq 1}$ be the random walk on this weighted graph and \mathcal{A}_{n} be the events observable by time n w.r.t $\left\{X_{k}\right\}_{k \geq 1}$.
(a) Show that $M_{n}=\left\|X_{n}\right\|^{2}-\frac{3}{2} n$ is a martingale w.r.t the filtration \mathcal{A}_{n}.
(b) Let $\tau_{R}=\min \left\{n \geq 0:\left\|X_{n}\right\|^{2} \geq R^{2}\right\}$. Show that

$$
\frac{2}{3} R^{2} \leq E\left[\tau_{R}\right] \leq \frac{2}{3}(R+\sqrt{2})^{2}
$$

Solution 2(a): We show that $\mathbb{E}\left[\left|M_{n}\right|\right]<\infty$. Indeed, $M_{n}=\left\|X_{n}\right\|^{2}-\frac{3}{2} n$, but $\left\|X_{n}\right\| \leq \sqrt{2} n$ since the furthest the random walk can travel in n steps away from the origin, is $\sqrt{2} n$. Therefore, we have

$$
\mathbb{E}\left[\left|M_{n}\right|\right] \leq \mathbb{E}\left[\left\|X_{n}\right\|^{2}\right]+\frac{3}{2} n \leq 2 n^{2}+\frac{3}{2} n<\infty
$$

for all n. Consider the set

$$
S=\{(1,0),(-1,0),(0,1),(0,-1),(1,1),(1,1),(1,1),(-1,-1)\}
$$

and $\left\{\xi_{k}: k \geq 1\right\}$ i.i.d ξ such that the distribution of ξ is Uniform (S). Let $x_{1}, \ldots, x_{n-1}=(x, y) \in \mathbb{Z}^{2}$ be such that $\mathbb{P}\left[X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}\right]>0$. Using $X_{n}=\sum_{k=1}^{n} \xi_{k}$. We have

$$
\begin{aligned}
\mathbb{E}\left[\left\|X_{n}\right\|^{2} \mid X_{n-1}=x_{n-1}, \ldots, X_{1}=x_{1}\right] & =\mathbb{E}\left[\left\|X_{n-1}+\xi_{n}\right\|^{2} \mid X_{n-1}=x_{n-1}, \ldots, X_{1}=x_{1}\right] \\
& =\mathbb{E}\left[\left\|x_{n-1}+\xi_{n}\right\|^{2} \mid X_{n-1}=x_{n-1}, \ldots, X_{1}=x_{1}\right] \\
\text { (using independence) } & =\mathbb{E}\left[\left\|x_{n-1}+\xi_{n}\right\|^{2}\right] \\
& =\frac{1}{8} \sum_{z \in S}\left\|x_{n-1}+z\right\|^{2} \\
& =\left\|x_{n-1}\right\|^{2}+\frac{3}{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left[M_{n} \mid X_{n-1}, \ldots, X_{1}\right] & =\mathbb{E}\left[\left\|X_{n}\right\|^{2} \mid X_{n-1}=x_{n-1}, \ldots, X_{1}=x_{1}\right]-\frac{3}{2} n \\
& =\left\|x_{n-1}\right\|^{2}+\frac{3}{2}-\frac{3}{2} n \\
& =\left\|x_{n-1}\right\|^{2}+\frac{3(n-1)}{2}
\end{aligned}
$$

where we have used linearity of conditional expectation and the fact that the conditional expectation of a constant is itself in the first line. Thus M_{n} is a martingale.

Solution 2(b) : Since it is not specified in the question, we shall assume $X_{0}=0$. For any n we have

$$
\left\{\tau_{R}=n\right\}=\left\{\left\|X_{1}\right\|<R, \ldots,\left\|X_{n-1}\right\|<R,\left\|X_{n}\right\| \geq R\right\}
$$

is an event observable by time n and therefore τ_{R} is a stopping time for all R. We will apply the Optional Sampling Theorem for which we have to verify the two hypothesis:

$$
\mathbb{E}\left(M_{n} \mid \tau_{R}>n\right) \mathbb{P}\left(\tau_{R}>n\right) \rightarrow 0 \quad \text { and } \quad \mathbb{E}\left(\left\|M_{\tau_{R}}\right\|^{2}\right)<\infty
$$

Let $\beta=\max _{\|x\|<R} \mathbb{P}\left(\tau_{R}>R \mid X_{0}=x\right)$. It is easy to see that $\beta<1$, for example by considering a path that goes only left or only right at each point for R steps has positive probability, depending upon the parities of the coordinates (and will result in $\tau_{R}<1$). Then using the Markov property, we have that

$$
\mathbb{P}\left(\tau_{R}>k R\right)<\beta^{k} \quad \text { and consequently } \quad \mathbb{E}\left[\tau_{R}\right]<\infty \quad \text { (why ?). }
$$

Also,

$$
\begin{equation*}
R^{2} \leq\left\|X_{\tau_{R}}\right\|^{2} \leq\left\|X_{\tau_{R}-1}\right\|^{2}+2 \leq R^{2}+2 \leq(R+\sqrt{2})^{2} \tag{1}
\end{equation*}
$$

Therefore

$$
\mathbb{E}\left[\left|M_{\tau_{R}}\right| \leq(R+\sqrt{2})^{2}+\mathbb{E}\left[\tau_{R}\right]+1<\infty\right.
$$

Second,

$$
\mathbb{E}\left(M_{n} \mid \tau_{R}>n\right) \mathbb{P}\left(\tau_{R}>n\right) \leq\left(2 n^{2}+\frac{3}{2} n\right) \beta^{\left\lfloor\frac{n}{R}\right\rfloor} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

So the Optional Sampling Theorem implies that

$$
\mathbb{E}\left[M_{\tau_{R}}\right]=\mathbb{E}\left[M_{1}\right]=0 \quad \Longleftrightarrow \quad \mathbb{E}\left[\left\|X_{\tau_{R}}\right\|^{2}\right]=\frac{3}{2} \mathbb{E}\left[\tau_{R}\right]
$$

Using (1) we have

$$
\frac{2}{3} R^{2} \leq \mathbb{E}\left[\tau_{R}\right] \leq \frac{2}{3}(R+\sqrt{2})^{2}
$$

as desired.

