Due: Thursday April 1, 2021, 10pm

Problems to be turned in: 2

- 1. We place M marbles in P pots. At each time unit we choose one of the marbles uniformly at random and place it in one of the urns also uniformly chosen at random. Denote by M_n to be the number of marbles in the first urn at time n. Find a_n, b_n , so that $a_nM_n + b_n$ is a martingale.
- 2. Let $V = \mathbb{Z}^2$ and $E = \{\{\mathbf{i}, \mathbf{j}\} : \mathbf{i}, \mathbf{j} \in V \text{ and } \| \mathbf{i} \mathbf{j} \| \leq \sqrt{2} \}$ with $\| \cdot \|$ denoting the euclidean norm. Consider the standard weight function $\mu \equiv 1$ on E. Let $\{X_n\}_{n\geq 1}$ be the random walk on this weighted graph and \mathcal{A}_n be the events observable by time n w.r.t $\{X_k\}_{k\geq 1}$.
 - (a) Show that $M_n = ||X_n||^2 \frac{3}{2}n$ is a martingale w.r.t the filtration \mathcal{A}_n .
 - (b) Let $\tau_R = \min\{n \ge 0 : || X_n ||^2 \ge R^2\}$. Show that

$$\frac{2}{3}R^2 \le E[\tau_R] \le \frac{2}{3}(R + \sqrt{2})^2$$

3. Let X_n be a Markov chain on S with transition matrix P and initial distribution μ . Assume S is finite and \mathcal{A}_n are observable events by time n w.r.t $\{X_k\}_{k\geq 1}$. Find conditions on a and $f: S \to \mathbb{R}$ such that $M_n = a^{-n} f(X_n)$ is a martingale w.r.t the filtration \mathcal{A}_n .

Book-Keeping Exercises

- 1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space on which $\{M_n\}_{n\geq 1}$ be a martingale w.r.t to the filtration \mathcal{A}_n of observable events by time n. Let $T: \Omega \to \mathbb{N}$ be a stopping such that $E[T] < \infty$. Assume that M_n are \mathbb{Z} valued random variables. Let $\epsilon > 0$ be given.
 - (a) Show that there is a M > 0 such that $\sum_{k=M}^{\infty} \mathbb{P}(|M_1| > k) < \epsilon$.
 - (b) Show that there is a N > 0 such that $\mathbb{P}(T > N) < \epsilon$.

Conclude that $\lim_{n\to} \mathbb{E}[|M_1| | 1(T > N)] = 0$

- 2. Let $\{Z_n\}_{n\geq 1}$ be a martingale, and for some integer m, let $Y_n = Z_{n+m} Z_m$.
 - (a) Show that $\mathbb{E}[Y_n \mid Z_{n+m-1} = z_{n_m-1}, Z_{n+m-2} = z_{n_m-2}, \dots, Z_1 = z_1] = z_{n+m-1} z_m$
 - (b) Show that $\mathbb{E}[Y_n \mid Y_{n+m-1} = y_{n_m-1}, Y_{n+m-2} = y_{n_m-2}, \dots, Y_1 = y_1] = y_{n-1}$
 - (c) Show that $\mathbb{E}[|Y_n|] < \infty$ and $\{Y_n\}_{n \ge 1}$ is a martingale.
- 3. Let $\{X_i\}_{i\geq 1}$ be a sequence of i.i.d. random variables such that $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}$. Let $Z_1 = -2$ and

$$Z_{n+1} = Z_n (1 + X_n \left(\frac{3n+1}{n+1}\right))$$

Let $J = \min\{n \ge 2 : \operatorname{sign}(Z_n) = \operatorname{sign}(Z_{n-1})\}$ be a stopping time.

- (a) Show that $\{Z_n\}_{n>1}$ is a martingale.
- (b) Using induction on n show that

$$\mathbb{P}(Z_n = -\frac{2^n}{n} \mid J > n) = 1$$
 and $\mathbb{P}(Z_n = -\frac{2^n(n-2)}{n^2 - n} \mid J = n) = 1$

(c) Show that $\mathbb{E} \mid Z_J \mid < \infty$ and $\lim_{n \to \infty} \mathbb{E}[Z_n \mid J > n] \mathbb{P}(J > n) = 0$