Due: Thursday April 1, 2021, 10pm

Problems to be turned in: 2

1. We place M marbles in P pots. At each time unit we choose one of the marbles uniformly at random and place it in one of the urns also uniformly chosen at random. Denote by M_{n} to be the number of marbles in the first urn at time n. Find a_{n}, b_{n}, so that $a_{n} M_{n}+b_{n}$ is a martingale.
2. Let $V=\mathbb{Z}^{2}$ and $E=\{\{\mathbf{i}, \mathbf{j}\}: \mathbf{i}, \mathbf{j} \in V$ and $\|\mathbf{i}-\mathbf{j}\| \leq \sqrt{2}\}$ with $\|\cdot\|$ denoting the euclidean norm. Consider the standard weight function $\mu \equiv 1$ on E. Let $\left\{X_{n}\right\}_{n \geq 1}$ be the random walk on this weighted graph and \mathcal{A}_{n} be the events observable by time n w.r.t $\left\{X_{k}\right\}_{k \geq 1}$.
(a) Show that $M_{n}=\left\|X_{n}\right\|^{2}-\frac{3}{2} n$ is a martingale w.r.t the filtration \mathcal{A}_{n}.
(b) Let $\tau_{R}=\min \left\{n \geq 0:\left\|X_{n}\right\|^{2} \geq R^{2}\right\}$. Show that

$$
\frac{2}{3} R^{2} \leq E\left[\tau_{R}\right] \leq \frac{2}{3}(R+\sqrt{2})^{2}
$$

3. Let X_{n} be a Markov chain on S with transition matrix P and initial distribution μ. Assume S is finite and \mathcal{A}_{n} are observable events by time n w.r.t $\left\{X_{k}\right\}_{k \geq 1}$. Find conditions on a and $f: S \rightarrow \mathbb{R}$ such that $M_{n}=a^{-n} f\left(X_{n}\right)$ is a martingale w.r.t the filtration \mathcal{A}_{n}.

Book-Keeping Exercises

1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space on which $\left\{M_{n}\right\}_{n \geq 1}$ be a martingale w.r.t to the filtration \mathcal{A}_{n} of observable events by time n. Let $T: \Omega \rightarrow \mathbb{N}$ be a stopping such that $E[T]<\infty$. Assume that M_{n} are \mathbb{Z} valued random variables. Let $\epsilon>0$ be given.
(a) Show that there is a $M>0$ such that $\sum_{k=M}^{\infty} \mathbb{P}\left(\left|M_{1}\right|>k\right)<\epsilon$.
(b) Show that there is a $N>0$ such that $\mathbb{P}(T>N)<\epsilon$.

Conclude that $\lim _{n \rightarrow} \mathbb{E}\left[\left|M_{1}\right| 1(T>N)\right]=0$
2. Let $\left\{Z_{n}\right\}_{n \geq 1}$ be a martingale, and for some integer m, let $Y_{n}=Z_{n+m}-Z_{m}$.
(a) Show that $\mathbb{E}\left[Y_{n} \mid Z_{n+m-1}=z_{n_{m}-1}, Z_{n+m-2}=z_{n_{m}-2}, \ldots, Z_{1}=z_{1}\right]=z_{n+m-1}-z_{m}$
(b) Show that $\mathbb{E}\left[Y_{n} \mid Y_{n+m-1}=y_{n_{m}-1}, Y_{n+m-2}=y_{n_{m}-2}, \ldots, Y_{1}=y_{1}\right]=y_{n-1}$
(c) Show that $\mathbb{E}\left[\left|Y_{n}\right|\right]<\infty$ and $\left\{Y_{n}\right\}_{n \geq 1}$ is a martingale.
3. Let $\left\{X_{i}\right\}_{i \geq 1}$ be a sequence of i.i.d. random variables such that $\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}\left(X_{i}=-1\right)=\frac{1}{2}$. Let $Z_{1}=-2$ and

$$
Z_{n+1}=Z_{n}\left(1+X_{n}\left(\frac{3 n+1}{n+1}\right)\right)
$$

Let $J=\min \left\{n \geq 2: \operatorname{sign}\left(Z_{n}\right)=\operatorname{sign}\left(Z_{n-1}\right)\right\}$ be a stopping time.
(a) Show that $\left\{Z_{n}\right\}_{n \geq 1}$ is a martingale.
(b) Using induction on n show that

$$
\mathbb{P}\left(\left.Z_{n}=-\frac{2^{n}}{n} \right\rvert\, J>n\right)=1 \quad \text { and } \mathbb{P}\left(\left.Z_{n}=-\frac{2^{n}(n-2)}{n^{2}-n} \right\rvert\, J=n\right)=1
$$

(c) Show that $\mathbb{E}\left|Z_{J}\right|<\infty$ and $\lim _{n \rightarrow \infty} \mathbb{E}\left[Z_{n} \mid J>n\right] \mathbb{P}(J>n)=0$

