2. Let $\Omega=\{-1,+1\}^{\mathbb{N}}$ equipped with the probability denoted by \mathbb{P}, such that

$$
\mathbb{P}\left(\left\{\omega \in \Omega: \pi_{N}(\omega)=\tilde{\omega}\right)=\frac{1}{2^{N}}=\mathbb{P}_{N}(\{\tilde{\omega}\}),\right.
$$

where $N \in \mathbb{N}, \tilde{\omega} \in \Omega_{N}=\{-1,1\}^{N}$, equipped with the uniform distribution, denoted by \mathbb{P}_{N} and π_{N} : $\Omega \rightarrow \Omega_{N}$ be the cannonical projection.

Consider for $k \geq 1, X_{k}: \Omega \rightarrow\{-1,1\}$ be given by $X_{k}(\omega)=\omega_{k}$ and for $1 \leq n$, let $S_{n}: \Omega \rightarrow \mathbb{Z}$ be given by $S_{n}(\omega)=\sum_{k=1}^{n} X_{k}(\omega)$ and $S_{0}=0$.

Definition: Let \mathcal{A}_{n} be the events that are observable by time n. We shall say a sequence of random variables, $\left\{H_{n}\right\}$ is a martingale w.r.t. the filtration \mathcal{A}_{n} if

$$
\mathbb{E}\left[\left|H_{n}\right|\right]<\infty \text { and } \mathbb{E}\left[H_{n} \mid S_{n-1}, \ldots, S_{1}\right]=H_{n-1}
$$

(a) Show that $\xi_{n}=S_{n}^{2}-n$ is a martingale w.r.t the filtration \mathcal{A}_{n}.
(d) Let $\left\{V_{k}\right\}_{k \geq 1}$ be a predictable process, that is for $c \in \mathbb{R}$,

$$
\left\{V_{k}=c\right\} \in \mathcal{A}_{k-1} .
$$

Then show that

$$
Z_{0}=0 \quad Z_{n}=\sum_{k=1}^{n} V_{k}\left(S_{k}-S_{k-1}\right)
$$

is a martingale w.r.t the filtration \mathcal{A}_{n}.

Solution 2(a) : We must prove that ξ_{n} is a martingale with respect to \mathcal{A}_{n}. For this, we note that

$$
\mathbb{E}\left[\left|\xi_{n}\right|\right] \leq \mathbb{E}\left[\left|S_{n}\right|^{2}\right]+n \leq n^{2}+n<\infty
$$

for all n where the second inequality follows from the fact that $\left|S_{n}\right|^{2}$ is bounded above by n^{2}. For the second part, fix $s_{n-1}, s_{n-2}, \ldots, s_{1}$ such that $\mathbb{P}\left[S_{n-1}=s_{n-1}, S_{n-2}=s_{n-2}, \ldots, s_{1}=s_{1}\right] \neq 0$. Then the conditional probability and expectation with respect to this event is well defined and we have :

$$
\begin{aligned}
\mathbb{E}\left[\xi_{n} \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] & =\sum_{k \in \mathbb{Z}} k \mathbb{P}\left[\xi_{n}=k \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] \\
& =\sum_{k \in \mathbb{Z}} k \mathbb{P}\left[S_{n}^{2}=n+k \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] \\
& =\sum_{k \in \mathbb{Z}} k \mathbb{P}\left[\left(s_{n-1}+X_{n}\right)^{2}=n+k \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] \\
& =\sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}\left[\left(s_{n-1}+X_{n}\right)^{2}=n+k, S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]}{\mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]}
\end{aligned}
$$

Since X_{n} is independent of S_{1}, \ldots, S_{n-1}, we get:

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}\left[\left(s_{n-1}+X_{n}\right)^{2}=n+k, S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]}{\mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]} & =\sum_{k \in \mathbb{Z}} k \frac{\mathbb{P}\left[\left(s_{n-1}+X_{n}\right)^{2}=n+k\right] \mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]}{\mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]} \\
& =\sum_{k \in \mathbb{Z}} k \mathbb{P}\left[\left(s_{n-1}+X_{n}\right)^{2}=n+k\right] \\
& =\left(\left(s_{n-1}+1\right)^{2}-n\right) \mathbb{P}\left[X_{n}=1\right]+\left(\left(s_{n-1}-1\right)^{2}-n\right) \mathbb{P}\left[X_{n}=-1\right] \\
& =\frac{\left.\left(s_{n-1}-1\right)^{2}-n+\left(s_{n-1}+1\right)^{2}-n\right)}{2}=s_{n-1}^{2}-(n-1)=\xi_{n-1}
\end{aligned}
$$

as desired. Thus, ξ_{n} is a martingale w.r.t \mathcal{A}_{n}.
Solution 2(d) : First note that $S_{k}-S_{k-1}=X_{k}$ therefore we have $Z_{n}=\sum_{k=1}^{n} V_{k} X_{k}$. Therefore :

$$
\mathbb{E}\left[\left|Z_{n}\right|\right] \leq \sum_{k=1}^{n} \mathbb{E}\left[\left|V_{k}\right|\left|X_{k}\right|\right] \leq \sum_{k=1}^{n} \mathbb{E}\left[\left|V_{k}\right|\right]<\infty
$$

As the V_{k} are bounded random variables, being functions on a finite domain. For the second condition, fix n. We know that $\left\{V_{k}=c\right\} \in A_{k-1} \subset A_{n-1}$ for all $k \leq n$. In particular, this implies that

$$
\left\{V_{k}=c\right\}=\left\{\left(X_{1}, \ldots, X_{n-1}\right) \in A^{\prime}\right\}
$$

for some set $A^{\prime} \subset\{ \pm 1\}^{n-1}$. But then, $X_{j}=S_{j}-S_{j-1}$, therefore $\left(X_{1}, \ldots, X_{n-1}\right)=g\left(S_{1}, \ldots, S_{n-1}\right)$ for some function g, and it follows that

$$
\left\{V_{k}=c\right\}=\left\{\left(S_{1}, \ldots, S_{n-1}\right) \in g^{-1}\left(A^{\prime}\right)\right\}
$$

for any k. In particular, for any set $B \subset D_{1} \times \ldots \times D_{k}$ where D_{i} denote the set of values which V_{i} takes for $1 \leq i \leq n$, we have

$$
\left\{\left(V_{1}, \ldots, V_{k}\right) \in B\right\}=\left\{S_{1}, \ldots, S_{n-1} \in S^{\prime}\right\}
$$

for some $S^{\prime} \subset \mathbb{Z}^{n}$. This establishes the following : there exists a function f^{\prime} with appropriate domain and codomain such that $V_{n}=f^{\prime}\left(S_{1}, \ldots, S_{n-1}\right)$. Using a similar argument for other $k \leq n$ this also implies that $Z_{n-1}=\sum_{k=1}^{n-1} V_{k} X_{k}=g\left(S_{1}, \ldots, S_{n}\right)$ for some function g.

Let $s_{n-1}, s_{n-2}, \ldots, s_{1}$ be such that $\mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]>0$. Then we have, from definitions and from the independence of X_{n} from S_{1}, \ldots, S_{n-1}, in an argument analogous to 2(a):

$$
\begin{aligned}
\mathbb{E}\left[Z_{n} \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] & =\sum_{K} K \mathbb{P}\left[Z_{n}=K \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] \\
& =\sum_{K} K \mathbb{P}\left[Z_{n-1}+V_{n} X_{n}=K \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] \\
& =\sum_{K} K \mathbb{P}\left[g\left(s_{n-1}, \ldots, s_{1}\right)+X_{n} f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)=K \mid S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right] \\
& =\sum_{K} K \frac{\mathbb{P}\left[g\left(s_{n-1}, \ldots, s_{1}\right)+X_{n} f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)=K, S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]}{\mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]} \\
& =\sum_{K} K \frac{\mathbb{P}\left[g\left(s_{n-1}, \ldots, s_{1}\right)+X_{n} f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)=K\right] \mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]}{\mathbb{P}\left[S_{n-1}=s_{n-1}, \ldots, S_{1}=s_{1}\right]} \\
& =\sum_{K} K \mathbb{P}\left[g\left(s_{n-1}, \ldots, s_{1}\right)+X_{n} f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)=K\right] \\
& =\left[g\left(s_{n-1}, \ldots, s_{1}\right)+f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)\right] \mathbb{P}\left[X_{n}=1\right]+\left[g\left(s_{n-1}, \ldots, s_{1}\right)-f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)\right] \mathbb{P}\left[X_{n}=-1\right] \\
& =\frac{\left[g\left(s_{n-1}, \ldots, s_{1}\right)+f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)\right]+\left[g\left(s_{n-1}, \ldots, s_{1}\right)-f^{\prime}\left(s_{n-1}, \ldots, s_{1}\right)\right]}{2} \\
& =g\left(s_{n-1}, \ldots, s_{1}\right)=Z_{n-1}
\end{aligned}
$$

which shows that Z_{n} is a martingale.3. Let X, Y, Z be discrete random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $\mathbb{P}(Y=y)>0$ and $\mathbb{P}(Z=z)>0$.
(a) Show that $\mathbb{E}[X Y \mid Y=y]=y \mathbb{E}[X \mid Y=y]$

Solution 3(a) : As $\mathbb{P}[Y=y]>0$, the expression $E[X Y \mid Y=y]$ is well defined. By definition, we have :

$$
E[X Y \mid Y=y]=\sum_{k \in \mathbb{Z}} k \mathbb{P}[X Y=k \mid Y=y]
$$

we now distinguish $y=0$ and $y \neq 0$. Indeed, if $y=0$ then we have :

$$
\sum_{k \in \mathbb{Z}} k \mathbb{P}[X Y=k \mid Y=0]=\sum_{k \in \mathbb{Z}} k \mathbb{P}[k=0 \mid Y=0]=0=y E[X \mid Y=y]
$$

trivially. For $y \neq 0$, we have :

$$
\sum_{k \in \mathbb{Z}} k \mathbb{P}[X Y=k \mid Y=y]=\sum_{k \in \mathbb{Z}} k \mathbb{P}\left[\left.X=\frac{k}{y} \right\rvert\, Y=y\right]=y \sum_{k \in \mathbb{Z}} \frac{k}{y} \mathbb{P}\left[\left.X=\frac{k}{y} \right\rvert\, Y=y\right]
$$

We claim that

$$
\sum_{k \in \mathbb{Z}} \frac{k}{y} \mathbb{P}\left[\left.X=\frac{k}{y} \right\rvert\, Y=y\right]=\sum_{l \in \mathbb{Z}} l \mathbb{P}[X=l \mid Y=y]
$$

To prove this, note that if $y \nmid k$ then $\mathbb{P}\left[X=\frac{k}{y}\right]=0$ and hence $\mathbb{P}\left[\left.X=\frac{k}{y} \right\rvert\, Y=y\right]=0$. Therefore, the only terms that remain on the LHS are those for which $y \mid k$. Reindexing with $l=\frac{y}{k}$ gives us the RHS. With this, we get :

$$
y \sum_{k \in \mathbb{Z}} \frac{k}{y} \mathbb{P}\left[\left.X=\frac{k}{y} \right\rvert\, Y=y\right]=y \sum_{l \in \mathbb{Z}} l \mathbb{P}[X=l \mid Y=y]=y E[X \mid Y=y]
$$

as desired.

