Due: Thursday March 18th, 2020, 10pm
Problems to be turned in: 2 (a), 2 (d), 3(a)

1. Please prepare an at least one page summary notes to an at most six page notes of your class talk. The notes should at the miminmum contain:
(a) Title of your class.
(b) Main objective (Statement of Theorem(s) or Question(s)- including notation required to understand the result.)
(c) An outline of the talk
or it can be as complete a set of notes for your entire talk.
2. Let $\Omega=\{-1,+1\}^{\mathbb{N}}$ equipped with the probability denoted by \mathbb{P}, such that

$$
\mathbb{P}\left(\left\{\omega \in \Omega: \pi_{N}(\omega)=\tilde{\omega}\right)=\frac{1}{2^{N}}=\mathbb{P}_{N}(\{\tilde{\omega}\})\right.
$$

where $N \in \mathbb{N}, \tilde{\omega} \in \Omega_{N}=\{-1,1\}^{N}$, equipped with the uniform distribution, denoted by \mathbb{P}_{N} and $\pi_{N}: \Omega \rightarrow \Omega_{N}$ be the cannonical projection.
Consider for $k \geq 1, X_{k}: \Omega \rightarrow\{-1,1\}$ be given by $X_{k}(\omega)=\omega_{k}$ and for $1 \leq n$, let $S_{n}: \Omega \rightarrow \mathbb{Z}$ be given by $S_{n}(\omega)=\sum_{k=1}^{n} X_{k}(\omega)$ and $S_{0}=0$.
Definition: Let \mathcal{A}_{n} be the events that are observable by time n. We shall say a sequence of random variables, $\left\{H_{n}\right\}$ is a martingale w.r.t. the filtration \mathcal{A}_{n} if

$$
\mathbb{E}\left[\left|H_{n}\right|\right]<\infty \quad \text { and } \mathbb{E}\left[H_{n} \mid S_{n-1}, \ldots, S_{1}\right]=H_{n-1}
$$

(a) Show that $\xi_{n}=S_{n}^{2}-n$ is a martingale w.r.t the filtration \mathcal{A}_{n}.
(b) Find $\left\{a_{n}\right\}_{n \geq 1}$ such that $\eta_{n}=S_{n}^{3}+a_{n} S_{n}$ is a martingale w.r.t filtration \mathcal{A}_{n}.
(c) Find $\left\{b_{n}\right\}_{n \geq 1}$ such that $\delta_{n}=S_{n}^{4}+b_{n} S_{n}^{2}+c_{n}$ is a martingale w.r.t filtration \mathcal{A}_{n}.
(d) Let $\left\{V_{k}\right\}_{k \geq 1}$ be a predictable process, that is for $c \in \mathbb{R}$,

$$
\left\{V_{k}=c\right\} \in \mathcal{A}_{k-1}
$$

Then show that

$$
Z_{0}=0 \quad Z_{n}=\sum_{k=1}^{n} V_{k}\left(S_{k}-S_{k-1}\right)
$$

is a martingale w.r.t the filtration \mathcal{A}_{n}.
3. Let X, Y, Z be discrete random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $\mathbb{P}(Y=$ $y)>0$ and $\mathbb{P}(Z=z)>0$.
(a) Show that $\mathbb{E}[X Y \mid Y=y]=y \mathbb{E}[X \mid Y=y]$
(b) If X is independent of Y then $\mathbb{E}[X \mid Y=y]=\mathbb{E}[X]$ and hence $\mathbb{E}[X \mid Y]=\mathbb{E}[X]$

Book Keeping Exercises

1. Let X_{n} be an irreducible Markov chain on a finite state space S with transition matrix P. For $i \in S$, a directed spanning tree on S with root at i is by definition a graph g which satisfies the following conditions:
(I) g has vertices indexed by S, and is a tree, meaning that it is connected and has no cycles; or equivalently, there is a unique path between any two vertices in g
(II) the edges of g are directed in such a way that for any $j \in S$, all the edges in the unique path from j to i is directed towards i - i.e., the path from j to i is directed towards i.

Let $G(i)$ be the set of all directed spanning trees on S with root at i. For every $i \in S$, define

$$
\pi_{0}(i)=\sum_{g \in G(i)} \prod_{(j \rightarrow k) \in g} p_{j k}
$$

where $j \rightarrow k$ denotes any directed edge in the tree g.
(a) Show that

$$
\pi_{0}(i)=\sum_{j \in S} \pi_{0}(j) p_{j i}, \forall i \in S
$$

which is equivalent to

$$
\begin{equation*}
\left(\sum_{g \in G(i)} \prod_{(j \rightarrow k) \in g} p_{j k}\right) \sum_{j \neq i} p_{i j}=\sum_{j \neq i}\left(\sum_{g \in G(j)} \prod_{(k \rightarrow j) \in g} p_{k j}\right) p_{j i} \tag{1}
\end{equation*}
$$

(b) Show that both sides of (1) are equal to $\sum_{g \in L} \prod_{(k \rightarrow j) \in g} p_{j k}$, where L is the set of all graphs satisfying:
(i) every point $i \in S$ has only one directed edge pointing way from i to $j \in S, j \neq i$.
(ii) the graph has exactly one closed cycle and $i \in S$ belongs to that cycle.
(c) Conclude that X_{n} has a stationary distribution.
2. Let X, Y, Z be discrete random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $\mathbb{P}(Y=$ $y)>0$ and $\mathbb{P}(Z=z)>0$.
(a) Show that $\mathbb{E}[X+Y \mid Y=y]=y+\mathbb{E}[X \mid Y=y]$
(b) Show that $\mathbb{E}[Y \mid Y=y, Z=z]=y$
3. The number of eggs N found in nests of a certain species of turtles has a Poisson distribution with mean λ. Each egg has probability p of being viable and this event is independent from egg to egg. Find the mean and variance of the number of viable eggs per nest.
4. Let $X \sim$ Uniform $\{1,2, \ldots, n\}$ be independent of $Y \sim \operatorname{Uniform}\{1,2, \ldots, n\}$. Let $Z=\max (X, Y)$ and $W=\min (X, Y)$.
(a) Find the joint distribution of (Z, W).
(b) Fine $E[Z \mid W]$.

