Due: Thursday March 18th, 2020, 10pm

Problems to be turned in: 2(a), 2(d), 3(a)

- 1. Please prepare an at least one page summary notes to an at most six page notes of your class talk. The notes should at the miminmum contain:
 - (a) Title of your class.
 - (b) Main objective (Statement of Theorem(s) or Question(s)- including notation required to understand the result.)
 - (c) An outline of the talk

or it can be as complete a set of notes for your entire talk.

2. Let $\Omega = \{-1, +1\}^{\mathbb{N}}$ equipped with the probability denoted by \mathbb{P} , such that

$$\mathbb{P}(\{\omega \in \Omega : \pi_N(\omega) = \tilde{\omega}) = \frac{1}{2^N} = \mathbb{P}_N(\{\tilde{\omega}\}),$$

where $N \in \mathbb{N}$, $\tilde{\omega} \in \Omega_N = \{-1, 1\}^N$, equipped with the uniform distribution, denoted by \mathbb{P}_N and $\pi_N : \Omega \to \Omega_N$ be the canonical projection.

Consider for $k \ge 1$, $X_k : \Omega \to \{-1, 1\}$ be given by $X_k(\omega) = \omega_k$ and for $1 \le n$, let $S_n : \Omega \to \mathbb{Z}$ be given by $S_n(\omega) = \sum_{k=1}^n X_k(\omega)$ and $S_0 = 0$.

Definition: Let \mathcal{A}_n be the events that are observable by time n. We shall say a sequence of random variables, $\{H_n\}$ is a martingale w.r.t. the filtration \mathcal{A}_n if

$$\mathbb{E}[|H_n|] < \infty \text{ and } \mathbb{E}[H_n | S_{n-1}, \dots, S_1] = H_{n-1}$$

- (a) Show that $\xi_n = S_n^2 n$ is a martingale w.r.t the filtration \mathcal{A}_n .
- (b) Find $\{a_n\}_{n\geq 1}$ such that $\eta_n = S_n^3 + a_n S_n$ is a martingale w.r.t filtration \mathcal{A}_n .
- (c) Find $\{b_n\}_{n\geq 1}$ such that $\delta_n = S_n^4 + b_n S_n^2 + c_n$ is a martingale w.r.t filtration \mathcal{A}_n .
- (d) Let $\{V_k\}_{k>1}$ be a *predictable process*, that is for $c \in \mathbb{R}$,

$$\{V_k = c\} \in \mathcal{A}_{k-1}.$$

Then show that

$$Z_0 = 0$$
 $Z_n = \sum_{k=1}^n V_k (S_k - S_{k-1})$

is a martingale w.r.t the filtration \mathcal{A}_n .

- 3. Let X, Y, Z be discrete random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $\mathbb{P}(Y = y) > 0$ and $\mathbb{P}(Z = z) > 0$.
 - (a) Show that $\mathbb{E}[XY \mid Y = y] = y\mathbb{E}[X \mid Y = y]$
 - (b) If X is independent of Y then $\mathbb{E}[X \mid Y = y] = \mathbb{E}[X]$ and hence $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$

Book Keeping Exercises

- 1. Let X_n be an irreducible Markov chain on a finite state space S with transition matrix P. For $i \in S$, a directed spanning tree on S with root at i is by definition a graph g which satisfies the following conditions:
 - (I) g has vertices indexed by S, and is a tree, meaning that it is connected and has no cycles; or equivalently, there is a unique path between any two vertices in g
 - (II) the edges of g are directed in such a way that for any $j \in S$, all the edges in the unique path from j to i is directed towards i i.e., the path from j to i is directed towards i.
 - Let G(i) be the set of all directed spanning trees on S with root at i. For every $i \in S$, define

$$\pi_0(i) = \sum_{g \in G(i)} \prod_{(j \to k) \in g} p_{jk},$$

where $j \to k$ denotes any directed edge in the tree g.

(a) Show that

$$\pi_0(i) = \sum_{j \in S} \pi_0(j) p_{ji}, \forall i \in S,$$

which is equivalent to

$$\left(\sum_{g\in G(i)}\prod_{(j\to k)\in g} p_{jk}\right)\sum_{j\neq i} p_{ij} = \sum_{j\neq i} \left(\sum_{g\in G(j)}\prod_{(k\to j)\in g} p_{kj}\right)p_{ji}$$
(1)

- (b) Show that both sides of (1) are equal to $\sum_{g \in L} \prod_{(k \to j) \in g} p_{jk}$, where L is the set of all graphs satisfying:
 - (i) every point $i \in S$ has only one directed edge pointing way from i to $j \in S$, $j \neq i$.
 - (ii) the graph has exactly one closed cycle and $i \in S$ belongs to that cycle.
- (c) Conclude that X_n has a stationary distribution.
- 2. Let X, Y, Z be discrete random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $\mathbb{P}(Y = y) > 0$ and $\mathbb{P}(Z = z) > 0$.
 - (a) Show that $\mathbb{E}[X + Y \mid Y = y] = y + \mathbb{E}[X \mid Y = y]$
 - (b) Show that $\mathbb{E}[Y \mid Y = y, Z = z] = y$
- 3. The number of eggs N found in nests of a certain species of turtles has a Poisson distribution with mean λ . Each egg has probability p of being viable and this event is independent from egg to egg. Find the mean and variance of the number of viable eggs per nest.
- 4. Let $X \sim \text{Uniform } \{1, 2, \dots, n\}$ be independent of $Y \sim \text{Uniform } \{1, 2, \dots, n\}$. Let $Z = \max(X, Y)$ and $W = \min(X, Y)$.
 - (a) Find the joint distribution of (Z, W).
 - (b) Fine $E[Z \mid W]$.