Due: Friday March 12th, 2020

Problems to be turned in: 3

Let \mathcal{A}_{n} be the events that are observable by time n.Let $N \in \mathbb{N}$. Consider

$$
\Omega_{N}=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right): \omega_{i} \in\{-1,+1\}\right.
$$

equipped with the uniform distribution, denoted by $\mathbb{P} \equiv \mathbb{P}_{N}$. For $1 \leq k \leq N$, let $X_{K}: \Omega_{N} \rightarrow\{-1,1\}$ be given by $X_{k}(\omega)=\omega_{k}$ and for $1 \leq n \leq N$, let $S_{n}: \Omega_{N} \rightarrow\{-1,1\}$ be given by $S_{n}(\omega)=\sum_{k=1}^{n} X_{k}(\omega)$ and $S_{0}=0$.

1. For $1 \leq n \leq N$, show that the mode of S_{n} is $\{0,1\}$ that is

$$
\max \left\{\mathbb{P}\left(S_{n}=a\right): a \in \mathbb{Z}\right\}=\left\{\begin{array}{ll}
\mathbb{P}\left(S_{2 k}=0\right) & \text { if } n=2 k, k \in \mathbb{N} \\
\mathbb{P}\left(S_{2 k-1}=1\right) & \text { if } n=2 k-1, k \in \mathbb{N}
\end{array}=\binom{2 k}{k} \frac{1}{2^{2 k}}\right.
$$

2. For $a<b, a, b \in \mathbb{Z}, 1 \leq n \leq N$ show that

$$
\mathbb{P}\left(a \leq S_{n} \leq b\right) \leq(b-a+1) \mathbb{P}\left(S_{n} \in\{0,1\}\right)
$$

and conclude that $\lim _{N \rightarrow \infty} \mathbb{P}\left(a \leq S_{N} \leq b\right)=0$.
3. Let $-\infty<a<0<b<\infty, a, b \in \mathbb{Z}$, ,

$$
\sigma_{a}=\min \left\{k \geq 1: S_{k}=a\right\} \quad \text { and } \quad \sigma_{b}=\min \left\{k \geq 1: S_{k}=b\right\}
$$

(a) Let $\tau_{N}=\min \left\{\sigma_{a}, \sigma_{b}, N\right\}$. Show that τ_{N} is a Stopping time.
(b) Show that

$$
\mathbb{E}\left(S_{\tau_{N}}\right)=a \mathbb{P}\left(\sigma_{a}<\sigma_{b}, \sigma_{a} \leq N\right)+b \mathbb{P}\left(\sigma_{b}<\sigma_{a}, \sigma_{b} \leq N\right)+\mathbb{E}\left(S_{N} 1\left(\min \left\{\sigma_{a} \sigma_{b}\right\}>N\right)\right)
$$

and

$$
\mathbb{E}\left(\tau_{N}\right)=a^{2} \mathbb{P}\left(\sigma_{a}<\sigma_{b}, \sigma_{a} \leq N\right)+b^{2} \mathbb{P}\left(\sigma_{b}<\sigma_{a}, \sigma_{b} \leq N\right)+\mathbb{E}\left(S_{N}^{2} 1\left(\min \left\{\sigma_{a}, \sigma_{b}\right\}>N\right)\right)
$$

(c) Show that

$$
1-\mathbb{P}\left(\sigma_{a}<\sigma_{b}, \sigma_{a} \leq N\right)-\mathbb{P}\left(\sigma_{b}<\sigma_{a}, \sigma_{b} \leq N\right)=\mathbb{P}\left(\min \left\{\sigma_{a}, \sigma_{b}\right\}>N\right)
$$

(d) Limits as $N \rightarrow \infty$.
i. $\mathbb{P}\left(\min \left\{\sigma_{a}, \sigma_{b}\right\}>N\right) \rightarrow 0$ as $N \rightarrow \infty$.
ii. $\mathbb{E}\left(S_{N} 1\left(\min \left\{\sigma_{a}, \sigma_{b}\right\}>N\right)\right) \rightarrow 0$ as $N \rightarrow \infty$.
iii. Show that there exists $\alpha_{a}, \alpha_{b} \in[0,1]$ such that

$$
\alpha_{a}=\lim _{n \rightarrow \infty} \mathbb{P}\left(\sigma_{a}<\sigma_{b}, \sigma_{a} \leq N\right) \quad \text { and } \quad \alpha_{b}=\lim _{n \rightarrow \infty} \mathbb{P}\left(\sigma_{b}<\sigma_{a}, \sigma_{b} \leq N\right)
$$

iv. Conclude that

$$
\alpha_{a}+\alpha_{b}=1 \quad \text { and } a \alpha_{a}+b \alpha_{b}=0
$$

Find α_{a}, α_{b}.
v. $\mathbb{E}\left(\tau_{N}\right) \rightarrow-a b$ as $N \rightarrow \infty$.
(e) Can you provide an interpretation to answers from (d)(iv) and (d) (v) ?

Book Keeping Exercises

1. Show that $\left\{X_{i}\right\}_{1 \leq i \leq N}$ are i.i.d. with distribution $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=\frac{1}{2}$.
2. Prove that an increment $S_{m}-S_{k}$ for $0<k<m \leq N$ has the same distribution as S_{m-k}.
3. Prove that S_{n} is a Makov Chain
4. Let for $0<k \leq N, a \in \mathbb{Z}, \mathbb{P}\left(S_{k}=a\right)>0$. Prove that for $0<k<m \leq N$,

$$
\mathbb{P}\left(S_{m}=b \mid S_{k}=a\right)=\mathbb{P}\left(S_{m-k}=b-a\right)
$$

for $b \in \mathbb{Z}$.
5. Let \mathcal{A}_{n} be the events that are observable by time n. Show that \mathcal{A}_{n} is closed under complimentation and intersections.
6. Let $a \in \mathbb{N}$ and $\sigma_{a}=\min \left\{k \geq 1: S_{k}=a\right\}$. Show that

$$
\mathbb{P}\left(\sigma_{a}=n\right)=\frac{1}{2}\left[\mathbb{P}\left(S_{n-1}=a-1\right)=-\mathbb{P}\left(S_{n-1}=a+1\right)\right]
$$

7. Gambler's Ruin Revisited Using Markov Chain Let X_{n} be a Markov chain on S with transition matrix P and initial distribution μ.
(a) Let $A \subset S$ and T^{A} be the hitting time of the set A. Let $g^{A}: S \rightarrow[0,1]$ be given by

$$
g^{A}(i)=E_{i}\left(T^{A}\right)
$$

i. g^{A} is a solution of the linear system of equations given by

$$
\begin{align*}
& g^{A}(i)=0 \text { if } i \in A \\
& g^{A}(i)=1+\sum_{j \in A^{c}} p_{i j} g^{A}(j) \text { if } i \notin A . \tag{1}
\end{align*}
$$

ii. If $u: S \rightarrow[0, \infty)$ is another solution to (1) then $u(i) \geq g^{A}(i)$ for all $i \in S$.
(b) Let X_{n} be a Markov chain on S with transition matrix P and initial distribution μ. Let $S=\{0,1, \ldots\}$ with $P\left(X_{0}=10\right)=1$ and transition matrix P be given by

$$
p_{i j}= \begin{cases}1 & \text { if } i=j=0 \\ p & \text { if } i \geq 1, j=i+1 \\ 1-p & \text { if } i \geq 1, j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $A=\{0\}$. Find $g^{A}(10)$.

