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1. As discussed in class, let T2 be a rooted binary tree, with root ρ. For each x ∈ T2, let α(x) ∈ T2

denote the ancestor of x and | x | denote the distance to the root ρ. On T2, consider the weight
function µ to be given by

µ({x, α(x)}) = β|x| for x ∈ T2

where β is a positive number. Let Xn denote the canonical random walk on (T2, µ).

(a) Show that for β < 1
2 that the random walk Xn is recurrent.

(b) Consider Yn =| Xn |.
i. Show that Yn is a Markov Chain on Z+.

ii. Show that Yn is recurrent when β = 1
2 .

iii. Show that Yn is transient when β > 1
2 .

(c) Conclude that Xn is transient if and only if β > 1
2 .

Solution1(a) : Let V be the vertex set of T2. Let Sn = {x ∈ V : |x| = n}. It can be readily
verified that V = ∪n≥0Sn, where the union is disjoint and using an inductive argument one can
show that |Sn| = 2n for all n ≥ 1. With a slight abuse of notation, µ induces a countably additive
set function on subsets of V , by

for x ∈ V, µ({x}) =
∑

x∼y,x,y∈V
µ({x, y}), and µ(A) =

∑
x∈A

µ({x}) for A ⊂ V.

We will prove that if β < 1
2 then µ(V ) < ∞, which (by a result shown in class) will then imply

that the graph is recurrent.

Assume β < 1
2 Let x ∈ Sn, n > 0. Then, note that, x has an edge to its ancestor α(x) in Sn−1

with edge weight βn and two edges to vertices y ∈ Sn+1, with α(y) = x, with edge weights βn+1.
This implies that µ({x}) = βn + 2βn+1. Therefore,

µ(Sn) =
∑
x∈Sn

µ({x}) =
∑
x∈Sn

βn + 2βn+1 = 2nβn + 2n+1βn+1

for n > 1 and µ(S0) = 2β.

µ(V ) = lim
m→∞

m∑
n=1

µ(Sn) = 2β + lim
m→∞

m∑
n=1

((2β)n + (2β)n+1) <∞,

(since 2β < 1 so the given series is a sum of two convergent geometric series). Thus, we are done.

Solution1(b) (i) : Xn is a Markov chain on T2 with transition matrix P and initial distribution
P[X0 = ρ] = 1, where P = [pxy]x,y∈T2

is given by

pxy =
µ({x, y})
µ({x})

=



1
1+2β if y = α(x), x ∈ T2, x 6= ρ

β
1+2β if x = α(y), x ∈ T2, y 6= ρ

0 otherwise.

We will show that Yn is a Markov chain. First, note that Yn takes values in Z+ and that Yn = y
if and only if Xn ∈ Sy for any n, y ∈ N. Suppose y ∈ Z+ we have P[Yn = y] > 0, then for some
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n ∈ N. Then for y, z ∈ Z+

P[Yn+1 = z|Yn = y] = P[Xn+1 ∈ Sz|Xn ∈ Sy]

=
1

P[Xn ∈ Sy]

∑
u∈Sz

P[Xn+1 = u,Xn ∈ Sy]

=
1

P[Xn ∈ Sy]

∑
u∈Sz,v∈Sy

P[Xn+1 = u,Xn = v]

=
1

P[Xn ∈ Sy]

∑
u∈Sz,v∈Sy

puvP[Xn = v]

= qyz (1)

where

qyz =



1
1+2β if z = y − 1, y 6= 0

2β
1+2β if z = y + 1, z 6= 0

0 otherwise.

(2)

Suppose for yj ∈ Z+ with j = 0, 1, . . . , n we have P[Yn = yn, . . . , Y0 = y0] > 0, then for yn+1 ∈ Z+

P[Yn+1 = yn+1|Yn = yn, . . . , Y0 = y0] = P[Xn+1 ∈ Syn+1
|Xn ∈ Syn , . . . , X0 ∈ Sy0 ]

=
∑

xn+1∈Syn+1

P[Xn+1 = xn+1|Xn ∈ Syn , . . . , X0 ∈ Sx0 ]

using the Markov Property for the Markov chain {Xn}n≥1 we have that the above is

(why ?) = P[Xn+1 = Syn+1 |Xn ∈ Syn ]

= P[Yn+1 = yn+1|Yn = yn] (3)

Using (3), (1), via an inductive argument and arguing similarly for case,
P[Yn+1 = yn+1, Yn = yn, . . . , Y0 = y0] = 0, we have

P[Yn+1 = yn+1, Yn = yn, . . . , Y0 = y0] = P(Y0 = y0)

n∏
i=1

qyi+1yi .

Thus we have show that Yn is a Markov chain on Z+ with transition matrix Q = [qyz]y,z∈Z+
and

initial distribution given by the random variable Y0.

Solution1(b) (ii) : Let β = 1
2 . Using problem 1 in Homework 2, with pi = 1

2 we note that 1(c)(i)

applies. So we have that h{0}(i) = Pi(T {0}Y <∞)) = 1, where T
{0}
Y = min{n ≥ 0 : Yn = 0}.

This means that the chain Yn is recurrent.

Solution1(b) (iii) : Let β > 1
2 . Using problem 1 in Homework 2, with pi = 1

1+2β , we note that

1(c)(ii) applies. So we have that h{0}(i) = Pi(T {0}Y <∞)) < 1.

Thus, we get that Yn is transient.

Solution1(c) : We know, from part(a), that Xn is transient if β < 1
2 . As noted earlier, for k ≥ 0,

Xn ∈ Sk if and only if Yn = k. So,

min{n ≥ 1 : Xn = ρ} := R
{ρ}
X = R

{0}
Y := min{n ≥ 1 : Yn = 0}.

So therefore,

P0(R
{ρ}
Y <∞)) = 1 if and only if Pρ(R{ρ}X <∞)) = 1.

Therefore, (using Book keeping Exercise 1 in Homework 3), Xn is recurrent if and only if Yn is
recurrent. Thus from (b), Xn is recurrent if β = 1

2 and transient if β > 1
2 .
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2. Let ξ, ξ1, ξ2, . . . be i.i.d random variables, (denoting the number of people arriving in time unit i to
a queue at a ticket counter) such that

P (ξ = k) = pk, k = 0, 1, 2, . . . ,

with
∑∞
k=0 pk = 1. Let X0 be the number of people in the queue at time 0. Then the number of

people in the queue at time n ≥ 1 can be described by

Xn = max{Xn−1 − 1, 0}+ ξn.

(a) Verify that Xn is a Markov chain on state space S = {0, 1, 2, . . .}.
(b) Show that the chain is irreducible if

0 < p0 < 1 and if there exists k > 1 such that pk > 0. (4)

(c) Assume (4). Let g : [0, 1]→ [0, 1] be given by g(a) =
∑∞
k=0 pka

k. Let µ = g′(1).

i. Let µ ≤ 1 and define f : S → R by f(i) = i. Show that

Ei(f(X1)) ≤ f(i) for all i 6= 0.

Conclude that Xn is recurrent.

ii. Show that if µ > 1 then there is an β ∈ (0, 1) such that g(β) = β

iii. Let µ > 1 and define f : S → R by f(i) = βi. Show that

Ei(f(X1)) = f(i)

Conclude that Xn is transient.

Solution2(a) : As P(ξn ≥ 0) = 1, by definition P(Xn ∈ S) = 1, thus Xn takes values in S.
For given {xi}1≤i≤n, we note that the events

{Xn = xn, . . . , X0 = x0}

and
{ξn = xn −max{xn−1 − 1, 0}, . . . , ξ1 = x1 −max{x0 − 1, 0}, X0 = x0}

are the same. Let n ≥ 1 and assume that P(Xn−1 = xn−1, . . . , X0 = x0) > 0.

P[Xn = xn|Xn−1 = xn−1, . . . , X0 = x0] =
P[Xn = xn, . . . , X0 = x0]

P[Xn−1 = xn−1, . . . , X0 = x0]

=
P[ξn = xn −max{xn−1 − 1, 0}, . . . , ξ1 = x1 −max{x0 − 1, 0}, X0 = x0]

P[ξn−1 = xn−1 −max{xn−1 − 1, 0}, . . . , ξ1 = x1 −max{x0 − 1, 0}, X0 = x0]

Using the Independence of {ξk}k≥1, we have that the above is

=

∏n
i=1 P[ξi = xi −max{xi−1 − 1, 0}] · P[X0 = x0]∏n−1
i=1 P[ξi = xi −max{xi−1 − 1, 0}] · P[X0 = x0]

= P[ξn = xn −max{xn−1 − 1, 0}].

=
P[Xn = xn, Xn−1 = xn−1]

P[Xn−1 = xn−1]
(5)

Further, as P[Xn−1 = xn−1] > 0 we have

P[Xn = xn|Xn−1 = xn−1] =
P[Xn = xn, Xn−1 = xn−1]

P[Xn−1 = xn−1]

=
P[ξn = xn −max{xn−1 − 1, 0}, Xn−1 = xn−1]

P[Xn−1 = xn−1]

=
P[ξn = xn −max{xn−1 − 1, 0}]P[Xn−1 = xn−1]

P[Xn−1 = xn−1]

= P[ξn = xn −max{xn−1 − 1, 0}] (6)
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From (5) and (6), we have that

P[Xn = xn|Xn−1 = xn−1, . . . , X0 = x0] = P[Xn = xn|Xn−1 = xn−1]

= P[ξn = xn −max{xn−1 − 1, 0}]

= qxn,xn−1
:=



pxn if xn ≥ 0, xn−1 = 0

pxn−xn−1+1 if xn ≥ xn−1 ≥ 1

p0 if xn = xn−1 − 1, xn−1 ≥ 1

0

otherwise

(7)

Using (7), via an inductive argument and arguing similarly for case
P[Xn+1 = xn+1, Xn = xn, . . . , X0 = x0] = 0 we have

P[Xn+1 = xn+1, Xn = xn, . . . , X0 = x0] = P(X0 = x0)

n∏
i=1

qxi+1xi

Thus we have show tnat Xn is a Markov chain on Z+ with transition matrix Q = [qyz]y,z∈Z+

given by 

p0 p1 p2 p3 p4 p5 . . .
p0 p1 p2 p3 p4 p5 . . .
0 p0 p1 p2 p3 p4 . . .
0 0 p0 p1 p2 p3 . . .
0 0 0 p0 p1 p2 . . .
... . . . . . . . . .


.

and initial distribution given by the random variable X0.

Solution2(b) : Let 0 < p0 < 1 and K > 1 be such that pK > 0.

For i ∈ Z+ and let
Si = {k : ∃N ∈ N such that QNik > 0}.

We will show that Si = Z+. Firstly, note that Si 6= ∅ as qij = p0 > 0 if j = i − 1, implying
i− 1 ∈ Si.
Secondly, if 1 ≤ j ∈ Si then j − 1 ∈ Si. This because, there exists an N such that qNij > 0

and qjk = p0 > 0 for k = j − 1 ∈ Si, which will imply that qN+1
ik > 0 .

Thirdly we will show that Si is unbounded. If j ∈ S then for l = j + (K − 1) qjl = pK > 0
implying j + (K − 1) ∈ Si. Repeating this inductively we have that l + m(K − 1) ∈ Si for
all m ≥ 1. With K > 1 this implies that Si is unbounded.

Combining the three steps above we have that Si = Z+ for all i ≥ 0. Therefore the chain is
irreducible.

Solution2(c) : We shall need the following result stated in class.

Theorem 1 (Lyapunov Function) Let Xn be an irreducible Markov chain on S = {0} ∪ N,
with transition matrix P . Then

(a) the chain is transient if and only if there is a bounded non-constant function f : S → R
such that

∞∑
j=0

pijf(j) = f(i), for all i 6= 0 (8)

(b) the chain is recurrent if there is a function f : S → R such that

lim
i→∞

f(i) =∞ (9)
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and
∞∑
j=0

pijf(j) ≤ f(i), for all i 6= 0 (10)

We shall try to decide whether the chain is recurrent or transient by using Theorem 1. As
indicated in the theorem, we need to find Lyapunov functions f satisfying (8) or (9) and (10).

Transience: Define f : S → R by f(i) = ai for some real number 0 < a < 1. We need to show∑∞
j=0 pijf(j) = f(i) for i 6= 0, so we to find 0 < a < 1 such that

∞∑
j=i−1

pj−i+1a
j = ai.

In other words, dividing both sides of above by ai−1, we need to find a such that

a =

∞∑
j=i−1

pj−i+1a
j−i+1, i 6= 0

or

a =

∞∑
k=0

pka
k.

Solution2(c) (i): Define f : S → R by f(i) = i. Clearly f satisfies (9). Further,

Ei(f(X1) =

∞∑
j=0

qijf(j) =

∞∑
j=i−1

pj−i+1j =

∞∑
k=0

pk(k + i− 1) = µ+ i− 1

The right hand side is less than equal to f(i) as µ ≤ 1. So f will satisfy (10) if µ ≤ 1 and, via
Theorem 1, the chain will be recurrent

Solution2(c) (ii): Now g(0) = p0 > 0, g(1) = 1 and µ = g′(1) =
∑∞
k=0 kpk > 1. Note that it

is a potentially divergent series, but all terms of the series are positive1

The function g(x)−x is positive at x = 0, vanishes at x = 1 and is strictly increasing at x = 1
and so negative just to the left of x = 1.

Therefore, there must exist 0 < a0 < 1 such that g(a0) = a0.

Solution2(c) (iii): Consider the function f(i) = ai0. Using (ii), for i 6= 0,

Ei(f(X1)) =

∞∑
j=0

qija
j
0 =

∞∑
j=i−1

pj−i+1a
j = ai−10 g(a0) = ai0 = f(i).

Thus f , satisfies (8). So , via Theorem 1, establishing transience of the chain if µ > 1.

In conclusion, the chain will be transient if µ > 1 and recurrent otherwise.

1So µ > 1 if it represents a real number and will assume condition if it diverges
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