1. As discussed in class, let \mathbb{T}_{2} be a rooted binary tree, with root ρ. For each $x \in \mathbb{T}_{2}$, let $\alpha(x) \in \mathbb{T}_{2}$ denote the ancestor of x and $|x|$ denote the distance to the root ρ. On \mathbb{T}_{2}, consider the weight function μ to be given by

$$
\mu(\{x, \alpha(x)\})=\beta^{|x|} \text { for } x \in \mathbb{T}_{2}
$$

where β is a positive number. Let X_{n} denote the canonical random walk on $\left(\mathbb{T}_{2}, \mu\right)$.
(a) Show that for $\beta<\frac{1}{2}$ that the random walk X_{n} is recurrent.
(b) Consider $Y_{n}=\left|X_{n}\right|$.
i. Show that Y_{n} is a Markov Chain on \mathbb{Z}_{+}.
ii. Show that Y_{n} is recurrent when $\beta=\frac{1}{2}$.
iii. Show that Y_{n} is transient when $\beta>\frac{1}{2}$.
(c) Conclude that X_{n} is transient if and only if $\beta>\frac{1}{2}$.

Solution 1(a) : Let V be the vertex set of \mathbb{T}_{2}. Let $S_{n}=\{x \in V:|x|=n\}$. It can be readily verified that $V=\cup_{n \geq 0} S_{n}$, where the union is disjoint and using an inductive argument one can show that $\left|S_{n}\right|=2^{n}$ for all $n \geq 1$. With a slight abuse of notation, μ induces a countably additive set function on subsets of V, by

$$
\text { for } x \in V, \quad \mu(\{x\})=\sum_{x \sim y, x, y \in V} \mu(\{x, y\}), \quad \text { and } \quad \mu(A)=\sum_{x \in A} \mu(\{x\}) \quad \text { for } A \subset V \text {. }
$$

We will prove that if $\beta<\frac{1}{2}$ then $\mu(V)<\infty$, which (by a result shown in class) will then imply that the graph is recurrent.
Assume $\beta<\frac{1}{2}$ Let $x \in S_{n}, n>0$. Then, note that, x has an edge to its ancestor $\alpha(x)$ in S_{n-1} with edge weight β^{n} and two edges to vertices $y \in S_{n+1}$, with $\alpha(y)=x$, with edge weights β^{n+1}. This implies that $\mu(\{x\})=\beta^{n}+2 \beta^{n+1}$. Therefore,

$$
\mu\left(S_{n}\right)=\sum_{x \in S_{n}} \mu(\{x\})=\sum_{x \in S_{n}} \beta^{n}+2 \beta^{n+1}=2^{n} \beta^{n}+2^{n+1} \beta^{n+1}
$$

for $n>1$ and $\mu\left(S_{0}\right)=2 \beta$.

$$
\mu(V)=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \mu\left(S_{n}\right)=2 \beta+\lim _{m \rightarrow \infty} \sum_{n=1}^{m}\left((2 \beta)^{n}+(2 \beta)^{n+1}\right)<\infty,
$$

(since $2 \beta<1$ so the given series is a sum of two convergent geometric series). Thus, we are done.

Solution 1(b) (i) : X_{n} is a Markov chain on \mathbb{T}_{2} with transition matrix P and initial distribution $\mathbb{P}\left[X_{0}=\rho\right]=1$, where $P=\left[p_{x y}\right]_{x, y \in \mathbb{T}_{2}}$ is given by

$$
p_{x y}=\frac{\mu(\{x, y\})}{\mu(\{x\})}= \begin{cases}\frac{1}{1+2 \beta} & \text { if } y=\alpha(x), x \in \mathbb{T}_{2}, x \neq \rho \\ \frac{\beta}{1+2 \beta} & \text { if } x=\alpha(y), x \in \mathbb{T}_{2}, y \neq \rho \\ 0 & \text { otherwise } .\end{cases}
$$

We will show that Y_{n} is a Markov chain. First, note that Y_{n} takes values in \mathbb{Z}_{+}and that $Y_{n}=y$ if and only if $X_{n} \in S_{y}$ for any $n, y \in \mathbb{N}$. Suppose $y \in \mathbb{Z}_{+}$we have $\mathbb{P}\left[Y_{n}=y\right]>0$, then for some
$n \in \mathbb{N}$. Then for $y, z \in \mathbb{Z}_{+}$

$$
\begin{align*}
\mathbb{P}\left[Y_{n+1}=z \mid Y_{n}=y\right] & =\mathbb{P}\left[X_{n+1} \in S_{z} \mid X_{n} \in S_{y}\right] \\
& =\frac{1}{\mathbb{P}\left[X_{n} \in S_{y}\right]} \sum_{u \in S_{z}} \mathbb{P}\left[X_{n+1}=u, X_{n} \in S_{y}\right] \\
& =\frac{1}{\mathbb{P}\left[X_{n} \in S_{y}\right]} \sum_{u \in S_{z}, v \in S_{y}} \mathbb{P}\left[X_{n+1}=u, X_{n}=v\right] \\
& =\frac{1}{\mathbb{P}\left[X_{n} \in S_{y}\right]} \sum_{u \in S_{z}, v \in S_{y}} p_{u v} \mathbb{P}\left[X_{n}=v\right] \\
& =q_{y z} \tag{1}
\end{align*}
$$

where

$$
q_{y z}= \begin{cases}\frac{1}{1+2 \beta} & \text { if } z=y-1, y \neq 0 \tag{2}\\ \frac{2 \beta}{1+2 \beta} & \text { if } z=y+1, z \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose for $y_{j} \in \mathbb{Z}_{+}$with $j=0,1, \ldots, n$ we have $\mathbb{P}\left[Y_{n}=y_{n}, \ldots, Y_{0}=y_{0}\right]>0$, then for $y_{n+1} \in \mathbb{Z}_{+}$

$$
\begin{aligned}
& \mathbb{P}\left[Y_{n+1}=y_{n+1} \mid Y_{n}=y_{n}, \ldots, Y_{0}=y_{0}\right]=\mathbb{P}\left[X_{n+1} \in S_{y_{n+1}} \mid X_{n} \in S_{y_{n}}, \ldots, X_{0} \in S_{y_{0}}\right] \\
& =\sum_{x_{n+1} \in S_{y_{n+1}}} \mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{n} \in S_{y_{n}}, \ldots, X_{0} \in S_{x_{0}}\right]
\end{aligned}
$$

using the Markov Property for the Markov chain $\left\{X_{n}\right\}_{n \geq 1}$ we have that the above is
$($ why $?)=\mathbb{P}\left[X_{n+1}=S_{y_{n+1}} \mid X_{n} \in S_{y_{n}}\right]$

$$
\begin{equation*}
=\mathbb{P}\left[Y_{n+1}=y_{n+1} \mid Y_{n}=y_{n}\right] \tag{3}
\end{equation*}
$$

Using (3), (1), via an inductive argument and arguing similarly for case, $\mathbb{P}\left[Y_{n+1}=y_{n+1}, Y_{n}=y_{n}, \ldots, Y_{0}=y_{0}\right]=0$, we have

$$
\mathbb{P}\left[Y_{n+1}=y_{n+1}, Y_{n}=y_{n}, \ldots, Y_{0}=y_{0}\right]=\mathbb{P}\left(Y_{0}=y_{0}\right) \prod_{i=1}^{n} q_{y_{i+1} y_{i}}
$$

Thus we have show that Y_{n} is a Markov chain on \mathbb{Z}_{+}with transition matrix $Q=\left[q_{y z}\right]_{y, z \in \mathbb{Z}_{+}}$and initial distribution given by the random variable Y_{0}.
Solution 1(b) (ii) : Let $\beta=\frac{1}{2}$. Using problem 1 in Homework 2, with $p_{i}=\frac{1}{2}$ we note that 1(c)(i) applies. So we have that $\left.h^{\{0\}}(i)=\mathbb{P}_{i}\left(T_{Y}^{\{0\}}<\infty\right)\right)=1$, where $T_{Y}^{\{0\}}=\min \left\{n \geq 0: Y_{n}=0\right\}$.
This means that the chain Y_{n} is recurrent.
Solution 1(b) (iii) : Let $\beta>\frac{1}{2}$. Using problem 1 in Homework 2, with $p_{i}=\frac{1}{1+2 \beta}$, we note that 1 (c)(ii) applies. So we have that $\left.h^{\{0\}}(i)=\mathbb{P}_{i}\left(T_{Y}^{\{0\}}<\infty\right)\right)<1$.
Thus, we get that Y_{n} is transient.
Solution 1(c): We know, from part(a), that X_{n} is transient if $\beta<\frac{1}{2}$. As noted earlier, for $k \geq 0$, $X_{n} \in S_{k}$ if and only if $Y_{n}=k$. So,

$$
\min \left\{n \geq 1: X_{n}=\rho\right\}:=R_{X}^{\{\rho\}}=R_{Y}^{\{0\}}:=\min \left\{n \geq 1: Y_{n}=0\right\}
$$

So therefore,

$$
\left.\left.\mathbb{P}_{0}\left(R_{Y}^{\{\rho\}}<\infty\right)\right)=1 \text { if and only if } \mathbb{P}_{\rho}\left(R_{X}^{\{\rho\}}<\infty\right)\right)=1
$$

Therefore, (using Book keeping Exercise 1 in Homework 3), X_{n} is recurrent if and only if Y_{n} is recurrent. Thus from (b), X_{n} is recurrent if $\beta=\frac{1}{2}$ and transient if $\beta>\frac{1}{2}$.
2. Let $\xi, \xi_{1}, \xi_{2}, \ldots$ be i.i.d random variables, (denoting the number of people arriving in time unit i to a queue at a ticket counter) such that

$$
P(\xi=k)=p_{k}, \quad k=0,1,2, \ldots,
$$

with $\sum_{k=0}^{\infty} p_{k}=1$. Let X_{0} be the number of people in the queue at time 0 . Then the number of people in the queue at time $n \geq 1$ can be described by

$$
X_{n}=\max \left\{X_{n-1}-1,0\right\}+\xi_{n} .
$$

(a) Verify that X_{n} is a Markov chain on state space $S=\{0,1,2, \ldots\}$.
(b) Show that the chain is irreducible if

$$
\begin{equation*}
0<p_{0}<1 \text { and if there exists } k>1 \text { such that } p_{k}>0 \tag{4}
\end{equation*}
$$

(c) Assume (4). Let $g:[0,1] \rightarrow[0,1]$ be given by $g(a)=\sum_{k=0}^{\infty} p_{k} a^{k}$. Let $\mu=g^{\prime}(1)$.
i. Let $\mu \leq 1$ and define $f: S \rightarrow \mathbb{R}$ by $f(i)=i$. Show that

$$
\mathbb{E}_{i}\left(f\left(X_{1}\right)\right) \leq f(i) \text { for all } i \neq 0
$$

Conclude that X_{n} is recurrent.
ii. Show that if $\mu>1$ then there is an $\beta \in(0,1)$ such that $g(\beta)=\beta$
iii. Let $\mu>1$ and define $f: S \rightarrow \mathbb{R}$ by $f(i)=\beta^{i}$. Show that

$$
\mathbb{E}_{i}\left(f\left(X_{1}\right)\right)=f(i)
$$

Conclude that X_{n} is transient.
Solution 2(a) : As $\mathbb{P}\left(\xi_{n} \geq 0\right)=1$, by definition $\mathbb{P}\left(X_{n} \in S\right)=1$, thus X_{n} takes values in S. For given $\left\{x_{i}\right\}_{1 \leq i \leq n}$, we note that the events

$$
\left\{X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right\}
$$

and

$$
\left\{\xi_{n}=x_{n}-\max \left\{x_{n-1}-1,0\right\}, \ldots, \xi_{1}=x_{1}-\max \left\{x_{0}-1,0\right\}, X_{0}=x_{0}\right\}
$$

are the same. Let $n \geq 1$ and assume that $\mathbb{P}\left(X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right)>0$.

$$
\begin{aligned}
& \mathbb{P}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right]=\frac{\mathbb{P}\left[X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right]}{\mathbb{P}\left[X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right]} \\
& \quad=\frac{\mathbb{P}\left[\xi_{n}=x_{n}-\max \left\{x_{n-1}-1,0\right\}, \ldots, \xi_{1}=x_{1}-\max \left\{x_{0}-1,0\right\}, X_{0}=x_{0}\right]}{\mathbb{P}\left[\xi_{n-1}=x_{n-1}-\max \left\{x_{n-1}-1,0\right\}, \ldots, \xi_{1}=x_{1}-\max \left\{x_{0}-1,0\right\}, X_{0}=x_{0}\right]}
\end{aligned}
$$

Using the Independence of $\left\{\xi_{k}\right\}_{k \geq 1}$, we have that the above is

$$
\begin{align*}
& =\frac{\prod_{i=1}^{n} \mathbb{P}\left[\xi_{i}=x_{i}-\max \left\{x_{i-1}-1,0\right\}\right] \cdot \mathbb{P}\left[X_{0}=x_{0}\right]}{\prod_{i=1}^{n-1} \mathbb{P}\left[\xi_{i}=x_{i}-\max \left\{x_{i-1}-1,0\right\}\right] \cdot \mathbb{P}\left[X_{0}=x_{0}\right]} \\
& =\mathbb{P}\left[\xi_{n}=x_{n}-\max \left\{x_{n-1}-1,0\right\}\right] . \\
& =\frac{\mathbb{P}\left[X_{n}=x_{n}, X_{n-1}=x_{n-1}\right]}{\mathbb{P}\left[X_{n-1}=x_{n-1}\right]} \tag{5}
\end{align*}
$$

Further, as $\mathbb{P}\left[X_{n-1}=x_{n-1}\right]>0$ we have

$$
\begin{align*}
\mathbb{P}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right] & =\frac{\mathbb{P}\left[X_{n}=x_{n}, X_{n-1}=x_{n-1}\right]}{\mathbb{P}\left[X_{n-1}=x_{n-1}\right]} \\
& =\frac{\mathbb{P}\left[\xi_{n}=x_{n}-\max \left\{x_{n-1}-1,0\right\}, X_{n-1}=x_{n-1}\right]}{\mathbb{P}\left[X_{n-1}=x_{n-1}\right]} \\
& =\frac{\mathbb{P}\left[\xi_{n}=x_{n}-\max \left\{x_{n-1}-1,0\right\}\right] \mathbb{P}\left[X_{n-1}=x_{n-1}\right]}{\mathbb{P}\left[X_{n-1}=x_{n-1}\right]} \\
& =\mathbb{P}\left[\xi_{n}=x_{n}-\max \left\{x_{n-1}-1,0\right\}\right] \tag{6}
\end{align*}
$$

From (5) and (6), we have that

$$
\begin{align*}
& \mathbb{P}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right]=\mathbb{P}\left[X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right] \\
& =\mathbb{P}\left[\xi_{n}=x_{n}-\max \left\{x_{n-1}-1,0\right\}\right] \\
& =q_{x_{n}, x_{n-1}}:= \begin{cases}p_{x_{n}} & \text { if } x_{n} \geq 0, x_{n-1}=0 \\
p_{x_{n}-x_{n-1}+1} & \text { if } x_{n} \geq x_{n-1} \geq 1 \\
p_{0} & \text { if } x_{n}=x_{n-1}-1, x_{n-1} \geq 1 \\
0 & \\
\text { otherwise }\end{cases} \tag{7}
\end{align*}
$$

Using (7), via an inductive argument and arguing similarly for case $\mathbb{P}\left[X_{n+1}=x_{n+1}, X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right]=0$ we have

$$
\mathbb{P}\left[X_{n+1}=x_{n+1}, X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right]=\mathbb{P}\left(X_{0}=x_{0}\right) \prod_{i=1}^{n} q_{x_{i+1} x_{i}}
$$

Thus we have show tnat X_{n} is a Markov chain on \mathbb{Z}_{+}with transition matrix $Q=\left[q_{y z}\right]_{y, z \in \mathbb{Z}_{+}}$ given by

$$
\left(\begin{array}{ccccccc}
p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \cdots \\
p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & \cdots \\
0 & p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & \cdots \\
0 & 0 & p_{0} & p_{1} & p_{2} & p_{3} & \cdots \\
0 & 0 & 0 & p_{0} & p_{1} & p_{2} & \cdots \\
\vdots & & & \cdots & & \cdots & \cdots
\end{array}\right)
$$

and initial distribution given by the random variable X_{0}.

Solution 2(b) : Let $0<p_{0}<1$ and $K>1$ be such that $p_{K}>0$.
For $i \in \mathbb{Z}_{+}$and let

$$
S_{i}=\left\{k: \exists N \in \mathbb{N} \text { such that } Q_{i k}^{N}>0\right\}
$$

We will show that $S_{i}=\mathbb{Z}_{+}$. Firstly, note that $S_{i} \neq \emptyset$ as $q_{i j}=p_{0}>0$ if $j=i-1$, implying $i-1 \in S_{i}$.
Secondly, if $1 \leq j \in S_{i}$ then $j-1 \in S_{i}$. This because, there exists an N such that $q_{i j}^{N}>0$ and $q_{j k}=p_{0}>0$ for $k=j-1 \in S_{i}$, which will imply that $q_{i k}^{N+1}>0$.
Thirdly we will show that S_{i} is unbounded. If $j \in S$ then for $l=j+(K-1) q_{j l}=p_{K}>0$ implying $j+(K-1) \in S_{i} . \quad$ Repeating this inductively we have that $l+m(K-1) \in S_{i}$ for all $m \geq 1$. With $K>1$ this implies that S_{i} is unbounded.
Combining the three steps above we have that $S_{i}=\mathbb{Z}_{+}$for all $i \geq 0$. Therefore the chain is irreducible.

Solution 2(c) : We shall need the following result stated in class.
Theorem 1 (Lyapunov Function) Let X_{n} be an irreducible Markov chain on $S=\{0\} \cup \mathbb{N}$, with transition matrix P. Then
(a) the chain is transient if and only if there is a bounded non-constant function $f: S \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} p_{i j} f(j)=f(i), \text { for all } i \neq 0 \tag{8}
\end{equation*}
$$

(b) the chain is recurrent if there is a function $f: S \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} f(i)=\infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} p_{i j} f(j) \leq f(i), \text { for all } i \neq 0 \tag{10}
\end{equation*}
$$

We shall try to decide whether the chain is recurrent or transient by using Theorem 1. As indicated in the theorem, we need to find Lyapunov functions f satisfying 8 (or (9) and (10).

Transience: Define $f: S \rightarrow \mathbb{R}$ by $f(i)=a^{i}$ for some real number $0<a<1$. We need to show $\sum_{j=0}^{\infty} p_{i j} f(j)=f(i)$ for $i \neq 0$, so we to find $0<a<1$ such that

$$
\sum_{j=i-1}^{\infty} p_{j-i+1} a^{j}=a^{i}
$$

In other words, dividing both sides of above by a^{i-1}, we need to find a such that

$$
a=\sum_{j=i-1}^{\infty} p_{j-i+1} a^{j-i+1}, i \neq 0
$$

or

$$
a=\sum_{k=0}^{\infty} p_{k} a^{k} .
$$

Solution 2(c) (i): Define $f: S \rightarrow \mathbb{R}$ by $f(i)=i$. Clearly f satisfies (9). Further,

$$
\mathbb{E}_{i}\left(f\left(X_{1}\right)=\sum_{j=0}^{\infty} q_{i j} f(j)=\sum_{j=i-1}^{\infty} p_{j-i+1} j=\sum_{k=0}^{\infty} p_{k}(k+i-1)=\mu+i-1\right.
$$

The right hand side is less than equal to $f(i)$ as $\mu \leq 1$. So f will satisfy 10 if $\mu \leq 1$ and, via Theorem 1, the chain will be recurrent

Solution 2(c) (ii): Now $g(0)=p_{0}>0, g(1)=1$ and $\mu=g^{\prime}(1)=\sum_{k=0}^{\infty} k p_{k}>1$. Note that it is a potentially divergent series, but all terms of the series are positive ${ }^{1}$
The function $g(x)-x$ is positive at $x=0$, vanishes at $x=1$ and is strictly increasing at $x=1$ and so negative just to the left of $x=1$.
Therefore, there must exist $0<a_{0}<1$ such that $g\left(a_{0}\right)=a_{0}$.

Solution 2(c) (iii): Consider the function $f(i)=a_{0}^{i}$. Using (ii), for $i \neq 0$,

$$
\mathbb{E}_{i}\left(f\left(X_{1}\right)\right)=\sum_{j=0}^{\infty} q_{i j} a_{0}^{j}=\sum_{j=i-1}^{\infty} p_{j-i+1} a^{j}=a_{0}^{i-1} g\left(a_{0}\right)=a_{0}^{i}=f(i)
$$

Thus f, satisfies (8). So , via Theorem 1, establishing transience of the chain if $\mu>1$.

In conclusion, the chain will be transient if $\mu>1$ and recurrent otherwise.

[^0]
[^0]: ${ }^{1}$ So $\mu>1$ if it represents a real number and will assume condition if it diverges

