Due: Friday March 5th, 2020

Problems to be turned in: 1,2

1. As discussed in class, let \mathbb{T}_2 be a rooted binary tree, with root ρ . For each $x \in \mathbb{T}_2$, let $\alpha(x) \in \mathbb{T}_2$ denote the ancestor of x and |x| denote the distance to the root ρ . On \mathbb{T}_2 , consider the weight function μ to be given by

$$\mu(\{x, \alpha(x)\}) = \beta^{|x|} \text{ for } x \in \mathbb{T}_2$$

where β is a positive number. Let X_n denote the canonical random walk on (\mathbb{T}_2, μ) .

- (a) Show that for $\beta < \frac{1}{2}$ that the random walk X_n is recurrent.
- (b) Consider $Y_n = |X_n|$.
 - i. Show that Y_n is a Markov Chain on \mathbb{Z}_+ .
 - ii. Show that Y_n is recurrent when $\beta = \frac{1}{2}$.
 - iii. Show that Y_n is transient when $\beta > \frac{1}{2}$.
- (c) Conclude that X_n is transient if and only if $\beta > \frac{1}{2}$.
- 2. Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d random variables, (denoting the number of people arriving in time unit *i* to a queue at a ticket counter) such that

$$P(\xi = k) = p_k, \quad k = 0, 1, 2, \dots$$

with $\sum_{k=0}^{\infty} p_k = 1$. Let X_0 be the number of people in the queue at time 0. Then the number of people in the queue at time $n \ge 1$ can be described by

$$X_n = \max\{X_{n-1} - 1, 0\} + \xi_n.$$

- (a) Verify that X_n is a Markov chain on state space $S = \{0, 1, 2, \ldots\}$.
- (b) Show that the chain is irreducible if

$$0 < p_0 < 1$$
 and if there exists $k > 1$ such that $p_k > 0$. (1)

(c) Assume (1). Let $g: [0,1] \to [0,1]$ be given by $g(a) = \sum_{k=0}^{\infty} p_k a^k$. Let $\mu = g'(1)$. i. Let $\mu \leq 1$ and define $f: S \to \mathbb{R}$ by f(i) = i. Show that

$$\mathbb{E}_i(f(X_1)) \leq f(i) \text{ for all } i \neq 0.$$

Conclude that X_n is recurrent.

- ii. Show that if $\mu > 1$ then there is an $\beta \in (0, 1)$ such that $g(\beta) = \beta$
- iii. Let $\mu > 1$ and define $f: S \to \mathbb{R}$ by $f(i) = \beta^i$. Show that

$$\mathbb{E}_i(f(X_1)) = f(i)$$

Conclude that X_n is transient.

- 3. Consider the canopy tree C_2 as a subgraph of \mathbb{T}_2 defined in class.
 - (a) For $n \ge 1$, find the volume of the ball of radius n around ρ .
 - (b) Show that there is only one infinite length self-avoiding path on \mathcal{C} .
- 4. Provide an example of a Markov Chain X_n on a graph $\Gamma = (V, E)$ such that chain has a stationary distribution π but π is not reversible.

Book Keeping Exercises

- 1. Let X_n be a random graph on weighted graph $\Gamma = (V, E)$ with weight function μ . For each $i \in V$, let $T_i = T^{\{i\}} = \min\{n \ge 0 : X_n = i\}$ and $R_i = \min\{n \ge 1 : X_n = i\}$ The following five conditions are equivalent:
 - (a) There exists $i \in V$ such that $\mathbb{P}_i(R_i < \infty) = 1$.
 - (b) For all $i \in V$, $\mathbb{P}_i(R_i < \infty) = 1$.
 - (c) For all $i \in V$,

$$\sum_{n=0}^{\infty} p_{ii}^n = \infty$$

- (d) For all $i, j \in V$, $\mathbb{P}_i(T_j < \infty) = 1$.
- (e) For all $i, j \in V$,

$$\mathbb{P}_i(X \text{ hits } j \text{ infinitely often.}) = \mathbb{P}_i(\sum_{n=0}^{\infty} \mathbb{1}(X_n = j) = \infty) = 1.$$

- 2. Let X_n be a Markov chain on S with transition matrix P and initial distribution μ . Let $A \subset S$ and T^A be the hitting time of the set A, i.e $T^A = \min\{n \ge 0 : X_n \in A\}$.
 - (a) For $n \ge 2$, show that

$$P_i(T^A = n) = \sum_{i_1 \notin A} \sum_{i_2 \notin A} \dots \sum_{i_{n-1} \notin A} \sum_{i_n \in A} p_{ii_1} \cdot \prod_{k=1}^{n-1} p_{i_k i_{k+1}}$$

and conclude that

$$P_i(T^A = n) = \sum_{j \notin A} p_{ij} P_j(T^A = n - 1).$$

(b) Let $h^A: S \to [0,1]$ be given by

$$h^A(i) = P_i(T^A < \infty).$$

Using 2(a) and the fact $\{T^A < \infty\} = \bigcup_{n=1}^{\infty} \{T^A = n\}$, show that h^A is a solution of the linear system of equations given by

$$h^{A}(i) = \begin{cases} 1 & \text{if } i \in A \\ \sum_{j \in S} p_{ij} h^{A}(j) & \text{if } i \notin A \end{cases}$$
(2)

- (c) Let $f: S \to [0, \infty)$ be another solution to (2).
 - i. Show that for each $i \in A^c$,

$$f(i) = P_i(T^A = 1) + P_i(T^A = 2) + \sum_{j \notin A} \sum_{k \notin A} p_{ij} p_{jk} f(k)$$

and hence conclude that

$$f(i) = \sum_{m=1}^{n} P_i(T^A = m) + \sum_{i_m \in A^c, 1 \le m \le n} p_{ii_1} \prod_{m=2}^{n} p_{i_{m-1}i_m} f(i_n).$$

ii. Show that $f(i) \ge h^A(i)$ for all $i \in V$