1. Let X_{n} be a Markov chain on $S=\{0,1, \ldots\}$ with transition matrix P with

$$
p_{i j}= \begin{cases}1 & \text { if } i=j=0 \\ p_{i} & \text { if } i \geq 1, j=i+1 \\ 1-p_{i} & \text { if } i \geq 1, j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

where we assme $0<p_{i}<1$ for every $i \geq 1$. Let $A=\{0\}$ and let $h^{A}: S \rightarrow[0,1]$ to be given by

$$
h^{A}(i)=P_{i}\left(T^{A}<\infty\right)
$$

(a) Let $u_{i}=h^{A}(i-1)-h^{A}(i)$. Show that

$$
u_{i+1}=\frac{q_{i}}{p_{i}} u_{i}
$$

for $i \geq 1$.
(b) Conclude that for $i \geq 1$,

$$
h^{A}(i)=1-u_{1}\left[\sum_{j=1}^{i} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)\right] .
$$

(c) Further,
i. If $\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)=\infty$, then

$$
h^{A}(i)=1 \text { for all } i \geq 0
$$

ii. If $\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)<\infty$, then

$$
h^{A}(i)=\frac{\sum_{j=i+1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)}{\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)} \quad \text { for all } i \geq 0
$$

Solution 1. We will use the following proposition.
Proposition 1: Let X_{n} be a Markov chain on S with transition matrix P and initial distribution μ. Let $A \subset S$ and T^{A} be the hitting time of the set A. Let $h^{A}: S \rightarrow[0,1]$ be given by

$$
h^{A}(i)=P_{i}\left(T^{A}<\infty\right)
$$

(A) h^{A} is a solution of the linear system of equations given by

$$
h^{A}(i)= \begin{cases}1 & \text { if } i \in A \tag{1}\\ \sum_{j \in S} p_{i j} h^{A}(j) & \text { if } i \notin A\end{cases}
$$

(B) If $f: S \rightarrow[0, \infty)$ is another solution to (1) then $f(i) \geq h(i)$ for all $i \in S$.

Solution 1(a): We shall denote $q_{i}=1-p_{i}$. Note Using the above Proposition 1 (A), we know that for $i>0$:

$$
h^{A}(i)=h^{A}(i+1) p_{i}+h^{A}(i-1) q_{i}
$$

This is the same as

$$
p_{i} h^{A}(i)+q_{i} h^{A}(i)=p_{i} h^{A}(i)+q_{i} h^{A}(i-1)
$$

that $q_{i}, p_{i}>0$ for all $i>0$. Let $u_{i}=h^{A}(i-1)-h^{A}(i)$ and a simple rearrangement implies that

$$
\begin{equation*}
u_{i+1}=\frac{q_{i}}{p_{i}} u_{i}, \text { for } i \geq 1 \tag{2}
\end{equation*}
$$

Solution 1(b): Iterating (2) inductively we obtain for all $i \geq 1$

$$
u_{i+1}=\left(\prod_{k=1}^{i} \frac{q_{k}}{p_{k}}\right) u_{1}
$$

On the other hand it is easy to see via a telescoping sum argument that

$$
h^{A}(0)-h^{A}(i)=\sum_{j=1}^{i} u_{j}
$$

and this implies

$$
\begin{equation*}
h^{A}(i)=1-u_{1}\left[\sum_{j=1}^{i} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)\right], \quad \text { for all } i \geq 1 \tag{3}
\end{equation*}
$$

Solution 1(c)(i): We assume that $\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)=\infty$. If $u_{1} \neq 0$, by assumption there exists an $N>1$ such that

$$
\sum_{j=1}^{N} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)>\frac{1}{\left|u_{1}\right|}
$$

Substituting this in (3) with $i=N$, would contradict the fact that $0 \leq h^{A}(N) \leq 1$. Hence, $u_{1}=0$. So from (3) again we have that

$$
h^{A}(i)=1 \text { for all } i \geq 1
$$

By definition $h^{A}(0)=1$ and we are done.

Solution 1(c)(ii): $\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)<\infty$.
Using the assumption and the fact that $0 \leq h^{A}(i) \leq 1$ in (3), we have that

$$
0 \leq u_{1} \leq \frac{1}{\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)}
$$

By Proposition 1 (B), h is the minimal solution. Using this and the above in (3) this implies that

$$
u_{1}=\frac{1}{\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)}
$$

Therefore for $i \geq 1$

$$
h^{A}(i)=\frac{\sum_{j=i+1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)}{\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)}
$$

By definition $h^{A}(0)=1$ and we are done.
5. Let S be a countable set, $\mathcal{F}=\mathcal{P}(S)$ be the power set of $S, \mathbb{P}, \mathbb{Q}, \mathbb{R}$ be Probabilities on S.
(a) Let $G=\{s \in S: \mathbb{P}(\{s\}) \geq \mathbb{Q}(\{s\})\}$, show that for any $F \in \mathcal{F}$ we have
i. $\mathbb{P}(F)-\mathbb{Q}(F) \leq \mathbb{P}(F \cap G)-\mathbb{Q}(F \cap G) \leq \mathbb{P}(G)-\mathbb{Q}(G)$
ii. $\mathbb{Q}(F)-\mathbb{P}(F) \leq \mathbb{Q}\left(G^{c}\right)-\mathbb{P}\left(G^{c}\right)$
iii. $\mathbb{P}(G)-\mathbb{Q}(G)=\mathbb{Q}\left(G^{c}\right)-\mathbb{P}\left(G^{c}\right)$
(b) Conclude from part (a) that

$$
\|\mathbb{P}-\mathbb{Q}\|_{\mathrm{TV}}:=\max _{A \in \mathcal{F}}|\mathbb{P}(A)-\mathbb{Q}(A)|=\frac{1}{2} \sum_{s \in S}|\mathbb{P}(\{s\})-\mathbb{Q}(\{s\})|
$$

Solution 5: We make some observations before we begin. Note that for $s \notin G$ we have

$$
\mathbb{P}(\{s\})<\mathbb{Q}(\{s\}) .
$$

In particular, for $S \subset G$ we have $\mathbb{P}(S) \geq \mathbb{Q}(S)$ and for $S \subset G^{c}$ we have $\mathbb{P}(S)<\mathbb{Q}(S)$. Let us make a notation and write $(\mathbb{P}-\mathbb{Q})(F)=\mathbb{P}(F)-\mathbb{Q}(F)$ for any F. With this, for $F \subset G$ we have $(\mathbb{P}-\mathbb{Q})(F) \geq 0$ and for $F \subset G^{c}$ we have $(\mathbb{P}-\mathbb{Q})(F)<0$.
Solution 5(a) (i) Let $F \in \mathcal{F}$, and write $F=(F \cap G) \cup\left(F \cap G^{c}\right)$. By disjointness,

$$
(\mathbb{P}-\mathbb{Q})(F)=(\mathbb{P}-\mathbb{Q})(F \cap G)+(\mathbb{P}-\mathbb{Q})\left(F \cap G^{c}\right)
$$

Note that $F \cap G^{c} \subset G^{c}$ so by our observation the second term is negative hence

$$
(\mathbb{P}-\mathbb{Q})(F) \leq(\mathbb{P}-\mathbb{Q})(F \cap G)
$$

In similar fashion, note that

$$
(\mathbb{P}-\mathbb{Q})(G)=(\mathbb{P}-\mathbb{Q})(G \cap F)+(\mathbb{P}-\mathbb{Q})\left(G \cap F^{c}\right)
$$

As $G \cap F^{c} \subset G$ the latter term on the RHS is non-negative hence

$$
(\mathbb{P}-\mathbb{Q})(G) \geq(\mathbb{P}-\mathbb{Q})(G \cap F)
$$

Solution 5(a) (ii) Now,

$$
(\mathbb{P}-\mathbb{Q})\left(G^{c}\right)=(\mathbb{P}-\mathbb{Q})\left(G^{c} \cap F\right)+(\mathbb{P}-\mathbb{Q})\left(G^{c} \cap F^{c}\right)
$$

and the latter term is negative as the argument is a subset of G^{c} hence

$$
(\mathbb{P}-\mathbb{Q})\left(G^{c}\right) \leq(\mathbb{P}-\mathbb{Q})\left(G^{c} \cap F\right)
$$

However, see that

$$
(\mathbb{P}-\mathbb{Q})(F)=(\mathbb{P}-\mathbb{Q})\left(G^{c} \cap F\right)+(\mathbb{P}-\mathbb{Q})(G \cap F)
$$

and the latter term is non-negative as the argument is a subset of G, hence

$$
(\mathbb{P}-\mathbb{Q})(F) \geq(\mathbb{P}-\mathbb{Q})\left(G^{c} \cap F\right)
$$

Combining the two inequalities we are done.

Solution 5(a) (iii) We have

$$
0=(\mathbb{P}-\mathbb{Q})(S)=(\mathbb{P}-\mathbb{Q})(G)+(\mathbb{P}-\mathbb{Q})\left(G^{c}\right)
$$

which implies that $\mathbb{P}(G)-\mathbb{Q}(G)=\mathbb{Q}\left(G^{c}\right)-\mathbb{P}\left(G^{c}\right)$.

Solution 5(b): Note that

$$
\begin{equation*}
\sum_{s \in S}|(\mathbb{P}-\mathbb{Q})(\{s\})|=\sum_{s \in G}|(\mathbb{P}-\mathbb{Q})(\{s\})|+\sum_{s \in G^{c}}|(\mathbb{P}-\mathbb{Q})(\{s\})|=(\mathbb{P}-\mathbb{Q})(G)-(\mathbb{P}-\mathbb{Q})\left(G^{c}\right)=2(\mathbb{P}-\mathbb{Q})(G) \tag{4}
\end{equation*}
$$

Now, from 5 (a)(i), for any $A \subset \mathcal{F}$ we already know that

$$
\begin{equation*}
(\mathbb{P}-\mathbb{Q})(A) \leq(\mathbb{P}-\mathbb{Q})(G) \tag{5}
\end{equation*}
$$

Using (4) and (5) we have that

$$
\|\mathbb{P}-\mathbb{Q}\|_{\mathrm{TV}}:=\max _{A \in \mathcal{F}}|\mathbb{P}(A)-\mathbb{Q}(A)|=(\mathbb{P}-\mathbb{Q})(G)=\frac{1}{2} \sum_{s \in S}|(\mathbb{P}-\mathbb{Q})(\{s\})| .
$$

