Due: Friday February 26th, 2020

Problems to be turned in: 2,5

1. Let $0<\alpha, \beta<1$. Consider a Markov chain X_{n} on state space $S=\{0,1\}$, with

$$
\mathbb{P}\left(X_{0}=0\right)=\mu_{0} \in(0,1), \mathbb{P}\left(X_{0}=1\right)=\mu_{1} \in(0,1)
$$

and transition matrix

$$
P=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right]
$$

(a) For any $n \geq 0$, show that

$$
\mathbb{P}\left(X_{n}=1\right)=\frac{\alpha}{\alpha+\beta}+(1-\alpha-\beta)^{n}\left(\mu_{1}-\frac{\alpha}{\alpha+\beta}\right)
$$

(b) Find the stationary distribution π of X_{n}.
(c) Let $1, \lambda$ be the eigen values of P. Show that

$$
\left\|\mathbb{P} \circ X_{n}^{-1}-\pi\right\|_{\mathrm{TV}}=\lambda^{n}\left(\mu_{1}-\frac{\alpha}{\alpha+\beta}\right)
$$

2. Let X_{n} be a Markov chain on $S=\{0,1, \ldots\}$ with transition matrix P with

$$
p_{i j}= \begin{cases}1 & \text { if } i=j=0 \\ p_{i} & \text { if } i \geq 1, j=i+1 \\ 1-p_{i} & \text { if } i \geq 1, j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

where we assme $0<p_{i}<1$ for every $i \geq 1$. Let $A=\{0\}$ and let $h^{A}: S \rightarrow[0,1]$ to be given by

$$
h^{A}(i)=P_{i}\left(T^{A}<\infty\right)
$$

(a) Let $u_{i}=h^{A}(i-1)-h^{A}(i)$. Show that

$$
u_{i+1}=\frac{q_{i}}{p_{i}} u_{i},
$$

for $i \geq 1$.
(b) Conclude that for $i \geq 1$,

$$
h^{A}(i)=1-u_{1}\left[\sum_{j=1}^{i} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)\right] .
$$

(c) Further,
i. If $\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)=\infty$, then

$$
h^{A}(i)=1 \text { for all } i \geq 0
$$

ii. If $\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)<\infty$, then

$$
h^{A}(i)=\frac{\sum_{j=i+1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)}{\sum_{j=1}^{\infty} \prod_{k=1}^{j-1}\left(\frac{q_{k}}{p_{k}}\right)}
$$

3. Let $a, b, c \in \mathbb{R}$ and $D=b^{2}-4 a c$. Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence such that for $n \geq 2$ it satisfies:

$$
\begin{equation*}
a x_{n}+b x_{n-1}+c x_{n-2}=0 . \tag{1}
\end{equation*}
$$

(a) Let $D>0$ and α, β be the two distinct roots of the quadratic equation $a x^{2}+b x+c$. Show that

$$
x_{n}=A \alpha^{n}+B \beta^{n},
$$

where $A, B \in \mathbb{R}$ is a solution to (1) and any solution to (1) is of this form.
(b) Let $D=0$ and α be the real repeated root of the quadratic equation $a x^{2}+b x+c$. Show that

$$
x_{n}=(A+n B) \alpha^{n}
$$

is a solution to (1) and any solution to (1) is of this form.
$\left\{\right.$ Hint for the second part of (a) and (b): if y_{n} is any other solution, solve for A, B by setting $x_{0}=y_{0}$ and $x_{1}=y_{1}$ then use the fact that both x_{n} and y_{n} are solutions to conclude $a\left(x_{n}-y_{n}\right)+b\left(x_{n-1}-\right.$ $\left.y_{n-1}\right)+c\left(x_{n-2}-y_{n-2}\right)=0$. Argue inductively that $x_{n}=y_{n}$ for all $n \geq 2$.\}
4. Let X_{n} be a Markov chain on state space $S=\{0,1, \ldots\}$ with $\mathbb{P}\left(X_{0}=10\right)=1$ and transition matrix P, given by

$$
p_{i j}= \begin{cases}1 & \text { if } i=j=0 \\ p & \text { if } i \geq 1, j=i+1 \\ 1-p & \text { if } i \geq 1, j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $A=\{0\}$. Using Exercise 3 to find $\mathbb{P}\left(T^{A}<\infty\right)$.
5. Let S be a countable set, $\mathcal{F}=\mathcal{P}(S)$ be the power set of $S, \mathbb{P}, \mathbb{Q}, \mathbb{R}$ be Probabilities on S.
(a) Let $G=\{s \in S: \mathbb{P}(\{s\}) \geq \mathbb{Q}(\{s\})\}$, show that for any $F \in \mathcal{F}$ we have
i. $\mathbb{P}(F)-\mathbb{Q}(F) \leq \mathbb{P}(F \cap G)-\mathbb{Q}(F \cap G) \leq \mathbb{P}(G)-\mathbb{Q}(G)$
ii. $\mathbb{Q}(F)-\mathbb{P}(F) \leq \mathbb{Q}\left(G^{c}\right)-\mathbb{P}\left(G^{c}\right)$
iii. $\mathbb{P}(G)-\mathbb{Q}(G)=\mathbb{Q}\left(G^{c}\right)-\mathbb{P}\left(G^{c}\right)$
(b) Conclude from part (a) that

$$
\|\mathbb{P}-\mathbb{Q}\|_{\mathrm{TV}}:=\max _{A \in \mathcal{F}}|\mathbb{P}(A)-\mathbb{Q}(A)|=\frac{1}{2} \sum_{s \in S}|\mathbb{P}(\{s\})-\mathbb{Q}(\{s\})| .
$$

Book Keeping Exercises

Let μ be any probability $]^{1}$ on S. Let $P=\left[p_{i j}\right]_{i, j \in S}$ be a matrix for which the entries satisfiy $p_{i j} \in[0,1]$ for all $i, j \in S$ and $\sum_{k=1}^{\infty} p_{i k}=1$ for each $i \in S$. Let (Ω, \mathcal{F}, P) be a probability space and for $n \geq 0$, let $X_{n}: \Omega \rightarrow S$ be a sequence of random variables whose joint distribution is given by

$$
\begin{equation*}
P\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{k}=i_{k}\right)=\mu\left(\left\{i_{0}\right\}\right) p_{i_{0} i_{1}} p_{i_{1} i_{2}} \ldots p_{i_{k-1} i_{k}} \tag{2}
\end{equation*}
$$

for all $k \geq 0$. Then X_{n} is said to be a Markov chain on state space S, with initial distribution μ, and transition matrix P.

1. (Distribution of X_{n}) Using the definition of Probability, (2), and properties of the transition matrix P show that

$$
\begin{equation*}
P\left(X_{n}=j\right)=\sum_{i_{0}, i_{1}, \ldots i_{n-1} \in S} \mu\left(\left\{i_{0}\right\}\right)\left(\prod_{k=1}^{n-1} p_{i_{k-1} i_{k}}\right) p_{i_{n-1}, j} \tag{3}
\end{equation*}
$$

In particular note that the distribution of X_{n} is determined soley by μ and the transition matrix P.
2. (Markov Property) Every Markov chain has an underlying memoryless property. For $n \in \mathbb{N}$ let $i_{0}, i_{1}, \ldots, i_{n-2}, i, j \in S$ is such that

$$
P\left(X_{n-1}=i, X_{n-2}=i_{n-2}, \ldots, X_{0}=i_{0}\right)>0
$$

then

$$
P\left(X_{n}=j \mid X_{n-1}=i, X_{n-2}=i_{n-2}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n}=j \mid X_{n-1}=i\right)
$$

Further, for all $m \geq 1, n \geq 0$, suppose Y_{n} is a sequence of random variables such that

$$
Y_{n} \sim\left(X_{m+n} \mid X_{m}=i\right)
$$

Then Y_{n} is a Markov chain on state space S with transition matrix P and $P\left(Y_{0}=i\right)=1$. Further the sequence $\left\{Y_{n}\right\}_{n \geq 0}$ is independent of the random variables $\left\{X_{0}, X_{1}, X_{2}, \ldots, X_{m-1}\right\}$.
3. Let P^{n} be the n-th power of the matrix P and $p_{i j}^{[n]}$ denote the (i, j)-th element of P^{n}. Show that

$$
P\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}^{[n]}
$$

and

$$
P\left(X_{n}=j \mid X_{n-1}=i\right)=p_{i j}
$$

if $P\left(X_{n-1}=i\right)>0$.
4. (Chapman-Kolmogrov Equation) For $r, s \geq 0$ and $r+s=n$, we have $P^{n}=P^{r+s}=P^{r} P^{s}$. Conclude

$$
P\left(X_{n}=j \mid X_{0}=i\right)=\sum_{k \in S} P\left(X_{r}=k \mid X_{0}=i\right) P\left(X_{s}=j \mid X_{0}=k\right)
$$

where the sum is understood to include only those terms for which the conditional probabilities are defined. This is referred to as the Chapman-Kolmogorov equation.
5. Consider a Markov chain X_{n} on state space $S=\{1,2,3,4,5\}, X_{0} \sim$ Uniform $\{1,2,3,4,5\}$, and the dynamics of the chain be given via a directed graph with S as the vertex set.

[^0]

Suppose P is the transition matrix of the above chain. Show that

$$
\lim _{n \rightarrow \infty} p_{11}^{[n]}=0, \quad \lim _{n \rightarrow \infty} p_{12}^{[n]}=0, \quad \lim _{n \rightarrow \infty} p_{13}^{[n]}=\frac{2}{7}, \quad \lim _{n \rightarrow \infty} p_{14}^{[n]}=\frac{1}{7}, \quad \lim _{n \rightarrow \infty} p_{15}^{[n]}=\frac{4}{7}
$$

[^0]: ${ }^{1}$ i.e $\mu: \mathcal{P}(S) \rightarrow[0,1]$ such that μ satisfies Definition ??, where $\mathcal{P}(S)$ is the power set of S.

