Due: Thursday April 29th, 2021, 10pm

Problems to be turned in: 3,4

1. Consider a Galton-Watson process with immigration, that is

$$
Z_{n}=1\left(Z_{n-1} \neq 0\right) \sum_{i=1}^{Z_{n-1}} X_{i}^{n}+I_{n}
$$

where $\left\{X_{i}^{n}\right\}_{1 \leq i, n}$ are i.i.d X such that $X \sim \operatorname{Bernoulli}(p)$ and $\left\{I_{n}\right\}_{n \geq 0}$ are i.i.d. Poisson (λ). Find a_{n}, b_{n} such that $M_{n}=a_{n}\left(Z_{n}-b_{n}\right)$ is a martingale.
2. Let S_{n} be the simple symmetric walk on \mathbb{Z}^{d}. Let

$$
\tau_{R}=\inf \left\{n \geq 0:\left|S_{n}\right|=R\right\}
$$

Let $h: \mathbb{Z}^{d} \rightarrow[0, \infty)$ be given by

$$
h(x)=\mathbb{P}_{x}\left(\tau_{20}<\tau_{1}\right)
$$

Show that
(a) $h(x)=1$ whenever $|x| \geq 20$
(b) $h(x)=0$ whenever $|x| \leq 1$
(c) h is harmonic on the set $1<|x|<20$, i.e.

$$
h(x)=\frac{1}{2 d}\left(\sum_{i=1}^{d} h\left(x+e_{d}\right)+h\left(x-e_{d}\right)\right)
$$

whenever $1<|x|<20$, where $\left\{e_{i}: 1 \leq i \leq d\right\}$ are the standard basis for \mathbb{Z}^{d}.
3. Consider the graph Γ be two copies of \mathbb{Z}^{3} joined at the origin. That is Γ is the graph obtained by taking copies $\mathbb{Z}_{(1)}^{3}$ and $\mathbb{Z}_{(2)}^{3}$ of \mathbb{Z}^{3} with origins denoted by O_{1} and O_{2} being joined by an edge. Let S_{n} be the simple symmetric walk on Γ with all edges having weight 1 . Let $h: \Gamma \rightarrow[0, \infty)$ be given by

$$
h(x)=\mathbb{P}_{x}\left(\cup_{n=1}^{\infty} \cap_{m=n}^{\infty}\left\{S_{m} \in \mathbb{Z}_{(1)}^{3}\right\}\right) .
$$

Show that
(a) h is non-negative harmonic on Γ.
(b) h does not satisfy the Liouville Property.
4. In the Moran model we may introduce a selective bias by making it twice as likely that a type a individual is chosen to die, as compared to a type A individual. Thus in a population of size m containing i type A individuals, the probability that some type A is chosen to die is now $\frac{i}{i+2(m-i)}$. Suppose we begin with just one type A. What is the probability that eventually the whole population is of type A ?

Book Keeping Exercises

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let

$$
L_{2}=\left\{X: \Omega \rightarrow \mathbb{R} \mid \mathbb{E}\left[X^{2}\right]<\infty\right\}
$$

Suppose $\left\{\xi_{n}\right\}_{n \geq 1}$ and ξ are in L_{2} such that $E\left[\left(\xi_{n}-\xi\right)^{2}\right] \rightarrow 0$ as $n \rightarrow \infty$. Show that $E\left(\xi_{n}\right) \rightarrow E(\xi)$ as $n \rightarrow \infty$.
2. Let $\mathcal{F}=\{F: \mathbb{R} \rightarrow[0,1]: F$ is a distribution function. $\}$ Define the function $d: \mathcal{F} \times \mathcal{F} \rightarrow[0, \infty)$ by

$$
d(F, G)=\inf \{\epsilon>0: G(x-\epsilon)-\epsilon \leq F(x) \leq G(x+\epsilon)+\epsilon\}
$$

Show that (\mathcal{F}, d) is a metric space. Further show that a sequence of random variables $\left\{X_{n}\right\}$ converges in distribution to X if and only if $\rho\left(F_{X_{n}}, F_{X}\right) \rightarrow 0$ as $n \rightarrow \infty$.
3. Let \mathcal{X} be the set of all random variables on the probability space $(\Omega, \mathcal{B}, \mathbb{P})$. Define a function $\rho: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$ by

$$
\rho(X, Y)=E(\min (|X-Y|, 1)
$$

for any $X, Y \in \mathcal{X}$. Show that (\mathcal{X}, ρ) is a metric space. Further show that a sequence of random variables $\left\{X_{n}\right\}$ converges in probability to X if and only if $\rho\left(X_{n}, X\right) \rightarrow 0$ as $n \rightarrow \infty$.
4. Let \mathcal{X} be the set of all random variables on the probability space $(\Omega, \mathcal{B}, \mathbb{P})$ such that $\mathbb{E}\left[X^{2}\right]<\infty$. Define a function $\rho: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$ by

$$
\eta(X, Y)=\sqrt{E\left(|X-Y|^{2}\right)}
$$

for any $X, Y \in \mathcal{X}$.
(a) Show that (\mathcal{X}, η) is a metric space.
(b) Show that a sequence of random variables $\left\{X_{n}\right\}$ converges to X in (\mathcal{X}, η), i.e. $\eta\left(X_{n}, X\right) \rightarrow 0$ then $\rho\left(X_{n} X\right) \rightarrow 0$ as $n \rightarrow \infty$.

