Due: Thursday April 29th, 2021, 10pm

Problems to be turned in: 3,4

1. Consider a Galton-Watson process with immigration, that is

$$Z_n = 1(Z_{n-1} \neq 0) \sum_{i=1}^{Z_{n-1}} X_i^n + I_n,$$

where $\{X_i^n\}_{1 \le i,n}$ are i.i.d X such that $X \sim \text{Bernoulli}(p)$ and $\{I_n\}_{n \ge 0}$ are i.i.d. Poisson (λ) . Find a_n, b_n such that $M_n = a_n(Z_n - b_n)$ is a martingale.

2. Let S_n be the simple symmetric walk on \mathbb{Z}^d . Let

$$\tau_R = \inf\{n \ge 0 : |S_n| = R\}.$$

Let $h: \mathbb{Z}^d \to [0,\infty)$ be given by

$$h(x) = \mathbb{P}_x(\tau_{20} < \tau_1).$$

Show that

- (a) h(x) = 1 whenever $|x| \ge 20$
- (b) h(x) = 0 whenever $|x| \le 1$
- (c) h is harmonic on the set 1 < |x| < 20, i.e.

$$h(x) = \frac{1}{2d} \left(\sum_{i=1}^{d} h(x+e_d) + h(x-e_d) \right),$$

whenever 1 < |x| < 20, where $\{e_i : 1 \le i \le d\}$ are the standard basis for \mathbb{Z}^d .

3. Consider the graph Γ be two copies of \mathbb{Z}^3 joined at the origin. That is Γ is the graph obtained by taking copies $\mathbb{Z}^3_{(1)}$ and $\mathbb{Z}^3_{(2)}$ of \mathbb{Z}^3 with origins denoted by O_1 and O_2 being joined by an edge. Let S_n be the simple symmetric walk on Γ with all edges having weight 1. Let $h: \Gamma \to [0, \infty)$ be given by

$$h(x) = \mathbb{P}_x(\bigcup_{n=1}^{\infty} \cap_{m=n}^{\infty} \{S_m \in \mathbb{Z}^3_{(1)}\})$$

Show that

- (a) h is non-negative harmonic on Γ .
- (b) h does not satisfy the Liouville Property.
- 4. In the Moran model we may introduce a selective bias by making it twice as likely that a type a individual is chosen to die, as compared to a type A individual. Thus in a population of size m containing i type A individuals, the probability that some type A is chosen to die is now $\frac{i}{i+2(m-i)}$. Suppose we begin with just one type A. What is the probability that eventually the whole population is of type A?

Book Keeping Exercises

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let

$$L_2 = \{ X : \Omega \to \mathbb{R} \, | \, \mathbb{E}[X^2] < \infty \}.$$

Suppose $\{\xi_n\}_{n\geq 1}$ and ξ are in L_2 such that $E[(\xi_n - \xi)^2] \to 0$ as $n \to \infty$. Show that $E(\xi_n) \to E(\xi)$ as $n \to \infty$.

2. Let $\mathcal{F} = \{F : \mathbb{R} \to [0,1] : F \text{ is a distribution function.}\}$ Define the function $d : \mathcal{F} \times \mathcal{F} \to [0,\infty)$ by

$$d(F,G) = \inf\{\epsilon > 0 : G(x-\epsilon) - \epsilon \le F(x) \le G(x+\epsilon) + \epsilon\}.$$

Show that (\mathcal{F}, d) is a metric space. Further show that a sequence of random variables $\{X_n\}$ converges in distribution to X if and only if $\rho(F_{X_n}, F_X) \to 0$ as $n \to \infty$.

3. Let \mathcal{X} be the set of all random variables on the probability space $(\Omega, \mathcal{B}, \mathbb{P})$. Define a function $\rho : \mathcal{X} \times \mathcal{X} \to [0, \infty)$ by

$$\rho(X, Y) = E(\min(|X - Y|, 1)),$$

for any $X, Y \in \mathcal{X}$. Show that (\mathcal{X}, ρ) is a metric space. Further show that a sequence of random variables $\{X_n\}$ converges in probability to X if and only if $\rho(X_n, X) \to 0$ as $n \to \infty$.

4. Let \mathcal{X} be the set of all random variables on the probability space $(\Omega, \mathcal{B}, \mathbb{P})$ such that $\mathbb{E}[X^2] < \infty$. Define a function $\rho : \mathcal{X} \times \mathcal{X} \to [0, \infty)$ by

$$\eta(X,Y) = \sqrt{E(|X-Y|^2)}$$

for any $X, Y \in \mathcal{X}$.

- (a) Show that (\mathcal{X}, η) is a metric space.
- (b) Show that a sequence of random variables $\{X_n\}$ converges to X in (\mathcal{X}, η) , i.e. $\eta(X_n, X) \to 0$ then $\rho(X_n X) \to 0$ as $n \to \infty$.