Due: Thursday April 22n, 2021, 10pm

Problems to be turned in: 3,4,7

1. Let $\left\{Y_{k}\right\}_{k \geq 1}$ be a sequence of discrete random variables. Let \mathcal{A}_{k} be the filtration of observable events by time k w.r.t $\left\{Y_{k}\right\}_{k \geq 1}$. Let X be another random variable such that $E[|X|]<\infty$. Define $X_{n}=E\left[X \mid \mathcal{A}_{n}\right]$
(a) Show that $\left\{X_{n}\right\}_{n \geq 1}$ is a martingale w.r.t. the filtration \mathcal{A}_{n}
(b) Does X_{n} converge as $n \rightarrow \infty$?
2. (Revisit Q2 Hw 6) Let $p=\frac{1}{2}$ and for $n \geq 1$ let

$$
Y_{n}=\frac{1}{2}+\sum_{k=1}^{n} \frac{1}{2^{k+1}} X_{k}
$$

Show that $Y_{n} \rightarrow Y$ converges as $n \rightarrow \infty$. Can you characterise the distribution Y ?
3. Let Ω be a finite set. For $m \geq 1$, let $\psi \in \Omega^{m}$. For $n \geq 1$. let $\left\{X_{n}\right\}_{n \geq 1}$ be independent and identically distributed as Uniform (Ω). Consider

$$
T=\min \left\{k \geq m:\left(X_{k-m+1}, X_{k-m+2}, \ldots, X_{k}\right)=\psi\right\}
$$

Show that there exists a $C>0$ and a Geometric random variable S such that $T \leq C S$.
4. Let X_{n} be a Markov chain on S with transition matrix P and initial distribution μ. Let $|S|<\infty$ and $\left\{X_{n}\right\}$ be irreducible and aperiodic. For $n \geq 1$, let

$$
\bar{d}(n)=\max _{x, y \in S}\left\|\mathbb{P}_{x}\left(X_{n} \in \cdot\right)-\mathbb{P}_{y}\left(X_{n} \in \cdot\right)\right\|_{\mathrm{TV}}
$$

Show that $\bar{d}(n+m) \leq \bar{d}(n) \bar{d}(m)$.
5. Let $\left\{M_{n}\right\}_{n \geq 1}$ be a martingale and T be stopping time for $\left\{M_{n}\right\}_{n \geq 1}$. Suppose $\mathbb{E}(T)<\infty$ and thre exists $C>0$ such that for all $n \geq 1$,

$$
\left|M_{n}-M_{n-1}\right| \leq C
$$

then show that

$$
\mathbb{E}\left(M_{T}\right)<\infty \text { and } \lim _{n \rightarrow \infty} \mathbb{E}\left(M_{n} \mid T \geq n\right) \mathbb{P}(T \geq n)=0
$$

6. Let $\left\{X_{n}\right\}_{n \geq 1}$ be independent with

$$
X_{n}= \begin{cases}1 & \text { with probability } \frac{1}{2 n} \\ 0 & \text { with probability } 1-\frac{1}{n} \\ -1 & \text { with probability } \frac{1}{2 n}\end{cases}
$$

For $n \geq 1$,

$$
Y_{n}= \begin{cases}X_{n} & \text { if } n=1 \text { or } Y_{n-1}=0, n \geq 2 \\ n Y_{n-1}\left|X_{n-1}\right| & \text { if } Y_{n-1} \neq 0, n \geq 2\end{cases}
$$

(a) Show that Y_{n} is a martingale.
(b) Find $\lim _{n \rightarrow \infty} \mathbb{P}\left(Y_{n}=0\right)$.
(c) Decide if Martingale convergence theorem applies and whether Y_{n} converges to some Y as $n \rightarrow \infty$ with probability 1 .
7. Let $m \in \mathbb{N}$ and $m \geq 2$. At time $n=1$, an urn contains $2 m$ balls, of which m are red and m are blue. At each time $n=2,3, \ldots m$ we draw a randomly chosen ball from the urn and record its colour. We do not replace it. Therefore, at time n the urn contains $2 m-n+1$ balls. For $n=1, \ldots 2 m$ let N_{n} denote the number of red balls and f_{n} denote the fraction of red balls in the urn after time n.
(a) Show that f_{n} is a martingale.
(b) Let T be the first time at which the ball drawn is red. Find $\mathbb{E}\left(f_{T}\right)$.

