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1 Introduction

A twice continuously differentiable function f : Rd → R is said to be harmonic if ∇f = 0, where ∇ is the
Laplacian operator. One of the characterizing properties for harmonic functions on Rd is the mean-value
property. This motivates the following definition of harmonic functions on Zd.

A function f : Zd → R is said to be harmonic if for all x ∈ Zd,

f(x) =
1

2d
(f(x+ e1) + f(x− e1) + · · ·+ f(x+ ed) + f(x− ed)) ,

where e1, ..., ed are the standard basis vectors.

We know that every bounded harmonic function on Rd is a constant function. The analogue of this result
for complex differentiable functions is Liouville’s theorem, which asserts that every bounded entire function
is a constant function. This leads us to the following definitions.

• Zd is said to have the Liouville property if every bounded harmonic function is a constant
function. (A function f : Zd → R is said to be bounded if there exist M ∈ R such that for each
x ∈ Zd, |f(x)| < M .)

• Zd is said to have the strong Liouville property if every positive harmonic function is a
constant function. (A function f : Zd → R is said to be positive if for each x ∈ Zd, f(x) > 0.)

Note that if Zd has the strong Liouville property then it has the Liouville property, for given a bounded
harmonic function we may add a constant function to get a positive harmonic function.

The main result of the subject is that:

Theorem 1. Zd has the strong Liouville property for all d ≥ 1. [3, page 101]

We will not prove this theorem. Instead, we prove that Z2 has strong Liouville property and Zd has the
Liouville property for all d ≥ 1. We show that Z2 has the strong Liouville property using the martingale
convergence theorem and recurrence of the simple random walk on Z2. We establish that Zd has the Liouville
property using two proofs: one using coupling and the other using reflection and martingale convergence.

We first consider the case d = 1 in the example below.
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Example: Suppose f is a positive harmonic function on Z. Let f(0) = a and f(1) = b. Since f is harmonic,
b = 1

2 (a+ f(2)) so f(2) = 2b− a = a+ 2(b− a). Similarly a = 1
2 (f(−1) + b) implies f(−1) = a− (b− a). We

can show by induction that f(x) = a + x(b − a). Therefore, f(x) cannot be positive for all x unless a = b.
So we conclude that f(x) = a for all x ∈ Z. This proves that Z has the strong Liouville property.

To prove the strong Liouville property for Z2 and the Liouville property for Zd, we require the following two
propositions about martingale convergence.

Proposition 1. Suppose {Xn}n≥0 is a martingale bounded in L1 : supn E[|Xn|] <∞. Then, with probability
1, X∞ = limn→∞Xn exists and is finite. In particular, the conclusion holds if the martingale is positive or
bounded. [1]

Proposition 2. Suppose {Xn}n≥0 is a bounded martingale. Then E[X∞] = E[X0]. [5, chapter 14, page
133]

2 Strong Liouville property for Z2

In this section we will use the martingale convergence theorem (proposition 1) to show the strong Liou-
ville property for Z2. We begin with a lemma that gives the connection between harmonic functions and
martingales.

Lemma 1. Let f : Zd → R be a harmonic function. Let {Xn}n≥0 be the simple random walk on Zd with
X0 = x for some x ∈ Zd. Then {f(Xn)}n≥0 is a martingale with respect to {Xn}n≥0. In particular, we have
E[f(Xn)] = f(X0) = f(x).

Proof. We first fix n and argue that E[|f(Xn)|] < ∞. Since Xn has finite range, f(Xn) does too. In
particular, f(Xn) is a bounded random variable, and so E[|f(Xn)|] < ∞. Next we verify the martingale
property. For n > 0 we have,

E[f(Xn)|Xn−1, . . . , X0]
(a)
= E[f(Xn)|Xn−1]

(b)
=

1

2d
(f(Xn−1 + e1) + f(Xn−1 − e1) + · · ·+ f(Xn−1 + ed) + f(Xn−1 − ed))

(c)
= f(Xn−1),

where (a) follows from the Markov property of {Xn}, (b) follows from the definition of a simple random
walk, and (c) follows because f is a harmonic function.

Proof. Let f : Z2 → R be a positive harmonic function. Let {Xn}n≥0 be a simple random walk with X0 = 0.
Fix x, y ∈ Z2. Let

R = {ω : Xn(ω) visits x and y infinitely many times};
S = {ω : f(Xn(ω)) converges}.

Since {Xn} is recurrent, we have Pr[R] = 1. Since {f(Xn)} is a positive martingale, by proposition 1 it
converges with probability 1, and we have Pr[S] = 1. Thus, Pr[S ∩R] = 1; in particular, S ∩R is nonempty.
Let ω ∈ S ∩ R and yn = f(Xn(ω). Fix ε > 0. Since {yn} converges it is a cauchy sequence. So we can
choose N ∈ N such that for all n,m > N , |yn − ym| < ε. Next, since ω ∈ R, we can choose n′,m′ > N such
that yn′ = x and ym′ = y. Therefore we have |yn′ − ym′ | < ε, or |f(x)− f(y)| < ε. Since ε was arbitrary we
conclude that f(x) = f(y).
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3 Liouville property for Zd

In this section, we give two proofs for the Liouville property for Zd.

Lemma 2. Suppose f is harmonic function that attains its supremum. Then it is constant.

Lemma 3. Suppose for all x, y ∈ Zd there exists a coupling (Xn, Yn) such that {Xn} and {Yn} are marginally
simple lazy random walks, (X0, Y0) = (x, y), and

lim
n→∞

Pr[Xn 6= Yn] = 0.

Then, every bounded harmonic function on Zd is the constant function.

Proof. Let f be a bounded harmonic function. Fix x, y ∈ Zd. We will show that f(x) = f(y). Let (Xn, Yn)
be a coupling satisfying the conditions above. Since f is harmonic, E[f(Xn)] = f(x) and E[f(Yn)] = f(y).
So for all n, we have |f(x) − f(y)| = |E[f(Xn)] − E[f(Yn)]|. Since f is bounded, there exists M > 0 such
that |f(x)| ≤M for all x ∈ Zd. Then we have,

|f(x)− f(y)| = |E[f(Xn)]− E[f(Yn)]|
= |E[(f(Xn)− f(Yn))I(Xn 6= Yn)]

≤ E[(|f(Xn)|+ |f(Yn)|)I(Xn 6= Yn)]

≤ 2M Pr[Xn 6= Yn].

Since limn→∞ Pr[Xn 6= Yn] = 0, we conclude that f(x) = f(y), as required.

Theorem 2. For all d ≥ 1, Zd has the Liouville property.

We give two proofs.

Proof 1. By lemma 3, it is enough to find a coupling (Xn, Yn) of two simple lazy random walks Xn and Yn
(with (X0, Y0) = (x, y)), such that Pr[Xn 6= Yn]→ 0.

We construct our coupling (Xn, Yn) as follows. At each step, draw a direction i ∈ {1, . . . , d} uniformly at
random. Then, we have two cases.

Xn(i) = Yn(i): With probability 1/2 leave both walks at the same position; with probability 1/2 move them
together in direction i.

Xn(i) 6= Yn(i): Choose either Xn or Yn with probability 1/2 and move the chosen walk in direction i, leaving
the other walk unchanged.

Observe that marginally both walks are distributed as simple lazy random walks. Furthermore, for coordinate
i, the difference Xn(i)−Yn(i) is a lazy simple one-dimensional random walk on Z (starting at X0(i)−Y0(i) =
x(i)− y(i)), with 0 as an absorbing state. This implies that with probability 1, there exists an N such that
for all n > N , we have Xn = Yn. Thus, limn→∞ Pr[Xn 6= Yn] = 0, as required.

Proof 2. Let {Xn} be a simple random walk with X0 = (1, 0, . . . , 0). Let τ = min{n : Xn(1) = 0}, that is,
the first time at which Xn(1) = 0. Define another simple random walk {Yn} (couple with {Xn} as follows:
if n < τ then Yn = (−Xn(1), Xn(2), . . . , Xn(d)), and if n ≥ τ then Yn = Xn. In other words, Yn is the
random walk reflected across the hyperplane x1 = 0 until Xn hits the hyperplane; after that Yn = Xn. Note
that {Yn} is marginally a simple random walk starting at (−1, 0, . . . , 0). Also, 0 is an absorbing state for
Xn(1)− Yn(1) since the simple lazy random walk on 2Z is recurrent. Thus, with probability 1, there exists
an N such that for all n > N , we have Xn = Yn.
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Figure 1: The orange walk represents {Xn} and the blue walk represents {Yn}. The brown walk represents
{Xn} and {Yn} after they have met.

Since {f(Xn)} and {f(Yn)} are bounded martingales, by proposition 1 they converge. Furthermore if
fX∞ = limn→∞ f(Xn) and fY∞ = limn→∞ f(Yn), we have

fX∞ = fY∞.

So, in particular, we have E[fX∞] = E[fY∞].

Now, since f(Xn) and f(Yn) are bounded martingales, by proposition 2 we have,

E[f(X0)] = E[fX∞] and E[(f(Y0)] = E[fY∞].

So we get
f(X0) = E[f(X0)] = E[fX∞] = E[fY∞] = E[f(Y0)] = f(Y0).

Thus, f((1, 0, . . . , 0) = f((−1, 0, . . . , 0)). By shifting the origin to a point x ∈ Zd and repeating the above
argument in direction i, we conclude that f(x + ei) = f(x − ei). This implies that f(x) = f(y) whenever
x = y (mod 2). Therefore f takes at most 2d different values, so f attains its supremum. By lemma 2 f is
a constant function.
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4 Other techniques

Another proof of the Liouville property

Let h : Zd → R be a bounded harmonic function. Here are the steps for another method to show
that h is constant. Let Y1, Y2, . . . be iid Y , where Y = ei with probability 1/2d and Y = −ei with
probability 1/2d, for each 1 ≤ i ≤ d.

1. Fix x ∈ Zd. Consider the sequence defined by

u1 = EY1 [(h(x+ Y1)− h(x))2],

and for n ≥ 2,

un = EY1,...,Yn
[(h(x+ Y1 + · · ·+ Yn)− h(x+ Y2 + · · ·+ Yn))2].

Show by the Cauchy-Schwarz inequality that un ≥ un−1.

2. Show that

un = EY1,...,Yn
[h2(x+ Y1 + · · ·+ Yn)]− EY1,...,Yn−1

[h2(x+ Y1 + · · ·+ Yn−1)].

3. Show that
∑

n≥1 un is a converging series of increasing non-negative terms. Conclude that
u1 = 0.

4. Conclude that h is a constant function.

For this argument given in a more general context see the introduction of [4].

Extension of the coupling argument to sub-linear functions

A function f : Zd → R is said to be sub-linear if f(x) = o(‖x‖), where ‖x‖ is the euclidean norm
of x. Suppose f is a sub-linear, harmonic function. Use the reflection coupling and show that
E[f(Xn)− f(Yn)]→ 0. Conclude that f is a constant function.

Acknowledgment

I thank Professor (!) Siva Athreya for his helpful comments on an earlier draft of these notes.

References

[1] Siva Athreya. Class Notes, Topics in Applied Stochastic Processes.

https://www.isibang.ac.in/~athreya/Teaching/tas/PDF/apr13.pdf

[2] Yuval Peres. Aspects of Markov Chains (Slides).

https://services.math.duke.edu/~rtd/CPSS2009/peres6.pdf
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