Bounded harmonic functions on \mathbb{Z}^d

Ritvik Radhakrishnan

April 22, 2021

1 Introduction

A twice continuously differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is said to be harmonic if $\nabla f = 0$, where ∇ is the Laplacian operator. One of the characterizing properties for harmonic functions on \mathbb{R}^d is the mean-value property. This motivates the following definition of harmonic functions on \mathbb{Z}^d .

A function $f : \mathbb{Z}^d \to \mathbb{R}$ is said to be harmonic if for all $x \in \mathbb{Z}^d$,

$$f(x) = \frac{1}{2d} \left(f(x+e_1) + f(x-e_1) + \dots + f(x+e_d) + f(x-e_d) \right),$$

where $e_1, ..., e_d$ are the standard basis vectors.

We know that every bounded harmonic function on \mathbb{R}^d is a constant function. The analogue of this result for complex differentiable functions is Liouville's theorem, which asserts that every bounded entire function is a constant function. This leads us to the following definitions.

- \mathbb{Z}^d is said to have the **Liouville** property if every bounded harmonic function is a constant function. (A function $f : \mathbb{Z}^d \to \mathbb{R}$ is said to be bounded if there exist $M \in \mathbb{R}$ such that for each $x \in \mathbb{Z}^d$, |f(x)| < M.)
- \mathbb{Z}^d is said to have the **strong Liouville** property if every positive harmonic function is a constant function. (A function $f : \mathbb{Z}^d \to \mathbb{R}$ is said to be positive if for each $x \in \mathbb{Z}^d$, f(x) > 0.)

Note that if \mathbb{Z}^d has the strong Liouville property then it has the Liouville property, for given a bounded harmonic function we may add a constant function to get a positive harmonic function.

The main result of the subject is that:

Theorem 1. \mathbb{Z}^d has the strong Liouville property for all $d \ge 1$. [3, page 101]

We will not prove this theorem. Instead, we prove that \mathbb{Z}^2 has strong Liouville property and \mathbb{Z}^d has the Liouville property for all $d \geq 1$. We show that \mathbb{Z}^2 has the strong Liouville property using the martingale convergence theorem and recurrence of the simple random walk on \mathbb{Z}^2 . We establish that \mathbb{Z}^d has the Liouville property using two proofs: one using coupling and the other using reflection and martingale convergence.

We first consider the case d = 1 in the example below.

Example: Suppose f is a positive harmonic function on \mathbb{Z} . Let f(0) = a and f(1) = b. Since f is harmonic, $b = \frac{1}{2}(a + f(2))$ so f(2) = 2b - a = a + 2(b - a). Similarly $a = \frac{1}{2}(f(-1) + b)$ implies f(-1) = a - (b - a). We can show by induction that f(x) = a + x(b - a). Therefore, f(x) cannot be positive for all x unless a = b. So we conclude that f(x) = a for all $x \in \mathbb{Z}$. This proves that \mathbb{Z} has the strong Liouville property.

To prove the strong Liouville property for \mathbb{Z}^2 and the Liouville property for \mathbb{Z}^d , we require the following two propositions about martingale convergence.

Proposition 1. Suppose $\{X_n\}_{n\geq 0}$ is a martingale bounded in L^1 : $\sup_n E[|X_n|] < \infty$. Then, with probability 1, $X_{\infty} = \lim_{n\to\infty} X_n$ exists and is finite. In particular, the conclusion holds if the martingale is positive or bounded. [1]

Proposition 2. Suppose $\{X_n\}_{n\geq 0}$ is a bounded martingale. Then $E[X_{\infty}] = E[X_0]$. [5, chapter 14, page 133]

2 Strong Liouville property for \mathbb{Z}^2

In this section we will use the martingale convergence theorem (proposition 1) to show the strong Liouville property for \mathbb{Z}^2 . We begin with a lemma that gives the connection between harmonic functions and martingales.

Lemma 1. Let $f : \mathbb{Z}^d \to \mathbb{R}$ be a harmonic function. Let $\{X_n\}_{n\geq 0}$ be the simple random walk on \mathbb{Z}^d with $X_0 = x$ for some $x \in \mathbb{Z}^d$. Then $\{f(X_n)\}_{n\geq 0}$ is a martingale with respect to $\{X_n\}_{n\geq 0}$. In particular, we have $\mathrm{E}[f(X_n)] = f(X_0) = f(x)$.

Proof. We first fix n and argue that $E[|f(X_n)|] < \infty$. Since X_n has finite range, $f(X_n)$ does too. In particular, $f(X_n)$ is a bounded random variable, and so $E[|f(X_n)|] < \infty$. Next we verify the martingale property. For n > 0 we have,

$$E[f(X_n)|X_{n-1},\dots,X_0] \stackrel{(a)}{=} E[f(X_n)|X_{n-1}]$$

$$\stackrel{(b)}{=} \frac{1}{2d} \left(f(X_{n-1}+e_1) + f(X_{n-1}-e_1) + \dots + f(X_{n-1}+e_d) + f(X_{n-1}-e_d) \right)$$

$$\stackrel{(c)}{=} f(X_{n-1}),$$

where (a) follows from the Markov property of $\{X_n\}$, (b) follows from the definition of a simple random walk, and (c) follows because f is a harmonic function.

Proof. Let $f : \mathbb{Z}^2 \to \mathbb{R}$ be a positive harmonic function. Let $\{X_n\}_{n\geq 0}$ be a simple random walk with $X_0 = 0$. Fix $x, y \in \mathbb{Z}^2$. Let

 $R = \{\omega : X_n(\omega) \text{ visits } x \text{ and } y \text{ infinitely many times}\};\\S = \{\omega : f(X_n(\omega)) \text{ converges}\}.$

Since $\{X_n\}$ is recurrent, we have $\Pr[R] = 1$. Since $\{f(X_n)\}$ is a positive martingale, by proposition 1 it converges with probability 1, and we have $\Pr[S] = 1$. Thus, $\Pr[S \cap R] = 1$; in particular, $S \cap R$ is nonempty. Let $\omega \in S \cap R$ and $y_n = f(X_n(\omega))$. Fix $\epsilon > 0$. Since $\{y_n\}$ converges it is a cauchy sequence. So we can choose $N \in \mathbb{N}$ such that for all n, m > N, $|y_n - y_m| < \epsilon$. Next, since $\omega \in R$, we can choose n', m' > N such that $y_{n'} = x$ and $y_{m'} = y$. Therefore we have $|y_{n'} - y_{m'}| < \epsilon$, or $|f(x) - f(y)| < \epsilon$. Since ϵ was arbitrary we conclude that f(x) = f(y).

3 Liouville property for \mathbb{Z}^d

In this section, we give two proofs for the Liouville property for \mathbb{Z}^d .

Lemma 2. Suppose f is harmonic function that attains its supremum. Then it is constant.

Lemma 3. Suppose for all $x, y \in \mathbb{Z}^d$ there exists a coupling (X_n, Y_n) such that $\{X_n\}$ and $\{Y_n\}$ are marginally simple lazy random walks, $(X_0, Y_0) = (x, y)$, and

$$\lim_{n \to \infty} \Pr[X_n \neq Y_n] = 0.$$

Then, every bounded harmonic function on \mathbb{Z}^d is the constant function.

Proof. Let f be a bounded harmonic function. Fix $x, y \in \mathbb{Z}^d$. We will show that f(x) = f(y). Let (X_n, Y_n) be a coupling satisfying the conditions above. Since f is harmonic, $\operatorname{E}[f(X_n)] = f(x)$ and $\operatorname{E}[f(Y_n)] = f(y)$. So for all n, we have $|f(x) - f(y)| = |\operatorname{E}[f(X_n)] - \operatorname{E}[f(Y_n)]|$. Since f is bounded, there exists M > 0 such that $|f(x)| \leq M$ for all $x \in \mathbb{Z}^d$. Then we have,

$$\begin{aligned} |f(x) - f(y)| &= |\mathbf{E}[f(X_n)] - \mathbf{E}[f(Y_n)]| \\ &= |\mathbf{E}[(f(X_n) - f(Y_n))\mathbf{I}(X_n \neq Y_n)] \\ &\leq \mathbf{E}[(|f(X_n)| + |f(Y_n)|)\mathbf{I}(X_n \neq Y_n)] \\ &\leq 2M \Pr[X_n \neq Y_n]. \end{aligned}$$

Since $\lim_{n\to\infty} \Pr[X_n \neq Y_n] = 0$, we conclude that f(x) = f(y), as required.

Theorem 2. For all $d \ge 1$, \mathbb{Z}^d has the Liouville property.

We give two proofs.

Proof 1. By lemma 3, it is enough to find a coupling (X_n, Y_n) of two simple lazy random walks X_n and Y_n (with $(X_0, Y_0) = (x, y)$), such that $\Pr[X_n \neq Y_n] \to 0$.

We construct our coupling (X_n, Y_n) as follows. At each step, draw a direction $i \in \{1, \ldots, d\}$ uniformly at random. Then, we have two cases.

- $X_n(i) = Y_n(i)$: With probability 1/2 leave both walks at the same position; with probability 1/2 move them together in direction *i*.
- $X_n(i) \neq Y_n(i)$: Choose either X_n or Y_n with probability 1/2 and move the chosen walk in direction *i*, leaving the other walk unchanged.

Observe that marginally both walks are distributed as simple lazy random walks. Furthermore, for coordinate i, the difference $X_n(i) - Y_n(i)$ is a lazy simple one-dimensional random walk on \mathbb{Z} (starting at $X_0(i) - Y_0(i) = x(i) - y(i)$), with 0 as an absorbing state. This implies that with probability 1, there exists an N such that for all n > N, we have $X_n = Y_n$. Thus, $\lim_{n \to \infty} \Pr[X_n \neq Y_n] = 0$, as required.

Proof 2. Let $\{X_n\}$ be a simple random walk with $X_0 = (1, 0, \ldots, 0)$. Let $\tau = \min\{n : X_n(1) = 0\}$, that is, the first time at which $X_n(1) = 0$. Define another simple random walk $\{Y_n\}$ (couple with $\{X_n\}$ as follows: if $n < \tau$ then $Y_n = (-X_n(1), X_n(2), \ldots, X_n(d))$, and if $n \ge \tau$ then $Y_n = X_n$. In other words, Y_n is the random walk reflected across the hyperplane $x_1 = 0$ until X_n hits the hyperplane; after that $Y_n = X_n$. Note that $\{Y_n\}$ is marginally a simple random walk starting at $(-1, 0, \ldots, 0)$. Also, 0 is an absorbing state for $X_n(1) - Y_n(1)$ since the simple lazy random walk on $2\mathbb{Z}$ is recurrent. Thus, with probability 1, there exists an N such that for all n > N, we have $X_n = Y_n$.

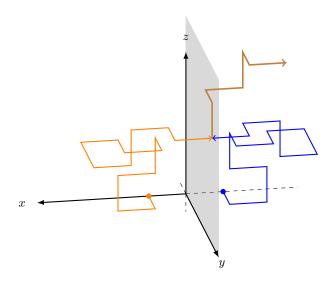


Figure 1: The orange walk represents $\{X_n\}$ and the blue walk represents $\{Y_n\}$. The brown walk represents $\{X_n\}$ and $\{Y_n\}$ after they have met.

Since $\{f(X_n)\}$ and $\{f(Y_n)\}$ are bounded martingales, by proposition 1 they converge. Furthermore if $f_{\infty}^X = \lim_{n \to \infty} f(X_n)$ and $f_{\infty}^Y = \lim_{n \to \infty} f(Y_n)$, we have

$$f_{\infty}^X = f_{\infty}^Y$$

So, in particular, we have $\mathbf{E}[f_{\infty}^X] = \mathbf{E}[f_{\infty}^Y]$.

Now, since $f(X_n)$ and $f(Y_n)$ are bounded martingales, by proposition 2 we have,

$$\mathbf{E}[f(X_0)] = \mathbf{E}[f_{\infty}^X] \text{ and } \mathbf{E}[(f(Y_0)]] = \mathbf{E}[f_{\infty}^Y].$$

So we get

$$f(X_0) = \mathbb{E}[f(X_0)] = \mathbb{E}[f_{\infty}^X] = \mathbb{E}[f_{\infty}^Y] = \mathbb{E}[f(Y_0)] = f(Y_0).$$

Thus, f((1, 0, ..., 0) = f((-1, 0, ..., 0)). By shifting the origin to a point $x \in \mathbb{Z}^d$ and repeating the above argument in direction *i*, we conclude that $f(x + e_i) = f(x - e_i)$. This implies that f(x) = f(y) whenever $x = y \pmod{2}$. Therefore *f* takes at most 2^d different values, so *f* attains its supremum. By lemma 2 *f* is a constant function.

4 Other techniques

Another proof of the Liouville property

Let $h : \mathbb{Z}^d \to \mathbb{R}$ be a bounded harmonic function. Here are the steps for another method to show that h is constant. Let Y_1, Y_2, \ldots be iid Y, where $Y = e_i$ with probability 1/2d and $Y = -e_i$ with probability 1/2d, for each $1 \le i \le d$.

1. Fix $x \in \mathbb{Z}^d$. Consider the sequence defined by

$$u_1 = \mathbf{E}_{Y_1}[(h(x+Y_1) - h(x))^2],$$

and for $n \geq 2$,

$$u_n = \mathbb{E}_{Y_1, \dots, Y_n} [(h(x + Y_1 + \dots + Y_n) - h(x + Y_2 + \dots + Y_n))^2].$$

Show by the Cauchy-Schwarz inequality that $u_n \ge u_{n-1}$.

2. Show that

$$u_n = \mathbb{E}_{Y_1,\dots,Y_n} [h^2(x+Y_1+\dots+Y_n)] - \mathbb{E}_{Y_1,\dots,Y_{n-1}} [h^2(x+Y_1+\dots+Y_{n-1})].$$

- 3. Show that $\sum_{n\geq 1} u_n$ is a converging series of increasing non-negative terms. Conclude that $u_1 = 0$.
- 4. Conclude that h is a constant function.

For this argument given in a more general context see the introduction of [4].

Extension of the coupling argument to sub-linear functions

A function $f : \mathbb{Z}^d \to \mathbb{R}$ is said to be sub-linear if f(x) = o(||x||), where ||x|| is the euclidean norm of x. Suppose f is a sub-linear, harmonic function. Use the reflection coupling and show that $E[f(X_n) - f(Y_n)] \to 0$. Conclude that f is a constant function.

Acknowledgment

I thank Professor (!) Siva Athreya for his helpful comments on an earlier draft of these notes.

References

- Siva Athreya. Class Notes, Topics in Applied Stochastic Processes. https://www.isibang.ac.in/~athreya/Teaching/tas/PDF/apr13.pdf
- [2] Yuval Peres. Aspects of Markov Chains (Slides). https://services.math.duke.edu/~rtd/CPSS2009/peres6.pdf
- [3] Gábor Pete. Probability and Geometry on Groups. https://math.bme.hu/~gabor/PGG.pdf

- [4] Albert Raugi. A general Choquet-Deny theorem for nilpotent groups. http://www.numdam.org/article/AIHPB_2004__40_6_677_0.pdf
- [5] David Williams. Probability with Martingales, Cambridge.