
survival probability in a Poisson
field of moving traps .

Section A : introduction

Let's say youre at the origin in the integer lattice . Along -with

you , there are traps distributed throughout the lattice
,
each

of which perform a random walk .

If you intersect with a trap ,

you either get captured, say with some probability q , or you escape .

Suppose at each point, a poisson number of traps are placed at time 0.

How would you move so as to maximise your survival probability?

We shall try to understand the best survival strategy formally.
Assume there is a poisson field of traps on Ted

, each following a

symmetric random walk - let X denote a particular trajectory that

you choose and let Y denote a particular trap random walk . At some

time n
,
if Xcn-7 yen) then X gets captured Wp q and escapes

Wp t-q. Each of the random walks in the poisson field try to

capture X in the above manner.

In this note , we try to understand the survival probability of x

averaged over the poisson field of moving traps - specifically ,

we show that this average survival probability is upper bounded

by the average survival probability of the trajectory that remains at O.

This is called the Pascal Principle because Pascal once asserted :

" All misfortune of men comes from the fact

that he doesn't stay peacefully in his room
"



Section B : The setup .

In this section , we present the required notation and the setup :

{xcn)} n> o is a map X : NV {03→ Ted
,
with XCoto.

{Ny}yezd , where Ny int Poisson CX) for yezd denotes the number of
traps at each point YEZD.

This is the Poisson field of moving traps .

{ Yj
't } yezd, leg's Ny is a family of lazy independent symmetric

random walks on Ed
.

For a particular YEZD and IEJENY , Yj
't

denotes the jth walk starting at YEZD.

The trapping probability , is denoted by 02921 . This means that
if Xen) = Yjtcn) at some time n , for some YEZD and IEjsny then

the trap walk YJY captures x with probability q and X survives

with probability i - q , (independent of gig .)

let Gcn , x) denote the number of traps at time n at position need.

Formally , Bcn ,x) = E Saltj Cn))
Yezd

, KjENy

where Sacy) = { I if n=y ,
O if nty .

Let's assume that the trajectory X has survived upto time n . Now
,
for

it to survive at time n , it must not be captured by any of the walks

at Xen) at time n . Observe that Bcn, xcn)) is the number of traps at Xen)

at time n .

Now , the probability that X
'

survives is (t- g)
EH'""?

Hence .
the probability that X is captured at time n is i- a-q)Kn×cn?



The probability that X survives upto time n is u- qj¥o%"""?

We want to study the average survival probability, denoted by Acn) , of the

walk X with the average taken corner the the Poisson field of traps .

Acn) = E5( Ci- qjfoeslilxci)) ? .

The notation Ees means your'e taking the expectation over f.

We will show that rich) is maximized for X=O
. This is our main

result that is stated in the next section . This treatment has been taken

from lemma 2.2 of [I] .

Section C : The result and an overview of the proof.

Theorem 1 : let X : INVEO} → Id be any given trajectory. Where XCO) -- O.

For a Poisson system of moving traps, let oxcn) denote the average survival

probability of the walk X upto n steps . Then
,

go Cn) 3 TX Ch) t NEIN

where to Cn) denotes the survival probability of a trajectory that uniformly

remains at O
. (i.e. going = EMU- g) Enes

" '"]
.

)

Proof : we know that for any X : IN Ufo}→Bd
,
the survival probability is

In) = EEC c,- qyiioeciixcissz .

First we average out the Poisson Field .
this is made precise in lemma 1.

lemma 1 : let X : INUEO}→ Ted
,
XCO) -- O. be given, r×Cn3=expE - xy.fzdwxcn.gs }

where

wxcn ,y3= Eye [ i- u- g)
E- ' HE"""""31 = ,- Eyyqc, -g)

E.HEYCitxcis's]
.



Note that in the above lemma, wxcn , y) is the probateability that x gets

captured by a trap Y starting at yezd in the first n steps with the

average taken over Y .

Given Lemma 1 , we will show y.Fzdwxcncy33yzzdw.cn , y) implying the result.

Now, to better understand wxcn ,y) , we define a stopping time for when

X gets captured by Y . For X to get captured by Y , we would require :

(a) The trajectory X and the walk Y must coincide and

(b) the trap at Y must be open , i. e. . the trap Y may capture X
. an

event happening independently with probability of.

Let Zi N Ber Cq) denote the state of the trap of Y at time i.

If Zi =L , the trap is open and if Zito , the trap is closed at time i .

Let Tx denote the stopping time mentioned above - Then
,

Ex = min { i> o : Y Ci) = X Ci) , Zi = I} . (Eq 2. l)

intuitively, one might think of P (Tx En) to denote the probability that

X has been captured by Y by time n .

Lemma 2 : in the setup described above, Wich ,y3= Pyt Ctx En).

Using the above lemma , its easy to complete the proof if we can

show the following result .

lemma 3 : For the above setup , Yezd Pty ( TxEn) 3 yEzd PI
'

toEn) .



If we have lemma 3 , then Werre done with the proof because

y¥zd Pj (Tx En) %yTfzdPyY (Toth)

⇒ (lemma 2) E w
' Cn ,y) 3 I

Yezd yezd
w° (n ' Y)

⇒ exp E - xyZ.zdwxcn.ly) } E exp E- x Eyez, Woon , y)}

⇒ (lemma 1) Mcn) E or Ocn) . I

therefore, the probability that any trajectory X surviving upto time n on

average cannot be more than the probability of survival given you remain

at the origin . Pascal Principle has been formalized!

Section D : proof of lemmas 1,2, 3

lemma 1 : let X : IN U{03→ Ted
,
XCO) -- O. be given, r×Cn3=expE - xy.fzdwxcn.us) }

Where

wxcn ,yg= EjCi- u- g)
E- ' HE"""""31 = ,- Eyyqc, - qjEHEYCis=xci33] .

Proof : (This formal proof isn't rigorous as it involves interchanging of

sums and interchange of countable products and expectations.)

we know Ny

oxen, = E5[ a- qiEo5c"""' I = ⇒ [u- qjEYE.z.DE Sniff yja

= ⇒ tyezd ⇐nyu
-qgEi8×cisHjYiDz

Since these walks Y are independent of each other and the Poisson field,



Hcn) = yt.cz, d
⇒ [ ftp.wyci-qiEsxciskljtci" ] .

= ytezd ET EN
't [ IT u-qy.IO Skis (Yj' Cil) ]

.

IEJENY
iid

As Ny n Poiscx) , we take this mean to get

Mn) = ytczd Ey
"

opcny.ie?Tjc.au-qjFEo8xcisCYjYCiDf=yTezdEyYCIIoeI?"

⇐ uh
-

qjEosxciscyjdcis.y-ytez.DE?.oeI?kEyC7gz..ci-q5Eosxa>wiki's]

=y¥daIoe÷?" (Ey' la- qjE-osmisltikis.ge
The last equation holds because Cl- g)

¥08"""Pli))
is iid for each IEJENY.

Now
,
we have

Acn) - ytez, II. FI, ( x Ey
' [ a- qjE-osxcisltikiM.ge

= feted e-
×
× exp{ x Ej [ a- qgiosxcisltjcis)]}

= Feted exp { -x (l - Ey' [ a- qjE-osxcisltjcis.ly }
=

ytezd exp { - x ( l - Ey
'

(c, -q5Eo1Excis=YPcis3z) }

=

ytezd exp { - X W'
'

Cny)} = exp { - xyZ.zdwxcn.gs } .

This completes the proof of lemma 1
. I



Lemma 2 : in the setup described above, Wich ,y3= Pyttcxfn).

Proof : Observe that Py
"
(TxEn)=L- Pyt (Tx >n)

Y
= I - pyf.io (X =YCi) . Zi=D

'

)

Pythian) = I- pyt.fi/ExCiS-tYCi33VEzi-- 03)) ftp.D

Let A be the event given by A = .fi#xCDtYCi33VEzi=03) . Then ,
n

HEA's = 1Er (Excise YCD}V{zi=0})} =
.

HE Ci) #YCi3}UEzi-03} .

i -- o

n

= IT I{zi=oy
I Ci#Hid}

= ⇐
o
ygz;=

A-Excised}

i=o

Replacing this value in Equation 3.1 ,

Py
'
(Ex En) = l - Ef II I{zi=o} 18×43--4433 I

= l - Ef ( c,-qjIIHExcis-ya.by

The last equation here holds because Zi is independent of the

event Ex = UCD} and PCZi=o) = u- q) .

This completes the proof of lemma 2. I



lemma 3 : For the above setup , Yezd Pty ( TxEn) 3 yEzd PI
'

to .cn) .

Proof : Before we get to the proof of this lemma , another small result is needed .

Lemma 3.1 : For a lazy symmetric mean O Walk Y , let pity) denote
the probability of reaching YEZD in n steps from O

. Then
,

prices 3 Pri' Cy) t n> o , Yezd and Pri co) > pihtico) t n>o.

The proof of lemma 3.1 is left as an exercise to the reader. (Hint : Use the

Fourier inversion of the characteristic function to get put Cy) = J ( 1010))
"

do
.
)

proof of lemma 3 : First we try to understand the trapping probability q

in the following way. We know PLZ i =D =

q ti .

If the random walk 4 Starts at Xcn) , then after time n , we have

Pxcts, ( U { tens = y37=1
YEZD

since we have p (Zn-- 1) =q , combining this in the above equation

q= pxcijyu.cz, EY Cn) -- y} . Zn=D

⇒ q
= yEez,d Pants ( 4cm -_ y ,

Zn=L) .

Since the Walk Y is symmetric, its time reversible . Therefore,

q= Eyez, Pty ( UCD= Xcn) , Zn=D.

The term in the summation , Pj (Y Cn) -- xcn) , Zn =D ,

denotes the

probability that a walk Y starting at Yezd collides with X at time n

when its trap is open.



Now, at time n , the walk X may get captured implying that the

stopping time Tx is n or , the stopping time Ex is some Ken .

q=yEzdPyY(4cm -

- xcn)
,
Zn =D

= y.fzdpjcex-D-y.Zz.DE?oPytcx=k3xpntuCxcn3-xCk3Jx q .

Using Lemma 3.1 ,

q t y§z,d Pj
'
(ex=D ty.Zz.DE?oPytcx=k3xpntuC0Jxq . (Eq 3.23

Now we apply the same arguement for XEO to get as Pot ( yhfz,d4Cn3=y)=I ,
and PC2n=D= q.

q= potyuezdtcns-y.zn-D-y-Z.cz,dPoY Hcn)=yc2n=D

q=y¥zdPyY(4cm -

- 0,2nA)

q= y.fzdpytcex-D-y.Zz.DE?oPycex=k)xpntuC0Jxq . Eq 3.3)

comparing Equation 3.2 and 3.3 , we get

Fez,dPy4Kx=n
) ty.cz?a&aoPgKx=k3pin-xC03qEyIeEgCEx--n3tyfz,!£oPjEx=k3pnICDq

(Eq 3. 4)

Now we define SI to be the probability that X is captured by Y on or

before time n and Sis to be the same for a walk that remains at O.

x -

Sn =

y?fz,d Pig
(Tx En) and Sno = ytzzdpyt (co En) .

(Eq 3.5)

It can be observed that ,



SI=yEezdPj (Tx =D zd
PITY 3=4103,25-1)=y¥zdPyY ( 403--0,20=1)

= Pot (TCO) -_ 0,20=1) =P (Zo=D =q

Using a similar argument it can be shown that Soo =
q .

Now we replace the values from Equation 3.5 in Equation 3.4 to get .

( Sno - sie) tqE.opnncoscsie-SE-DECSn-snntq-nI.opn.no> (sic - sit)
⇒ q£pi' . . co> (SE-SI- i - sits i ) + Isn't - Sni ) Esri - Sno

⇒ of pink co) (s: - SE) - q¥print, co> Csi- sie ) tsm - Sno -i Esri - Sno

⇒ qpico) (Sno-i - Sii ) t qII. (pntxco) - pntutico) )(sie- SE)tCSnI -Sni) Esri - Sno

⇒ Sri - Sno 3 (Sn'T - Sni) G - qpicoD-qzalpn-xcos-pnt.ie#CoDCSE - SE)

we know Sox - 58=0
, pntxcofpn.it, co) from lemma 3.1 and

I - qpilco) > O . This implies that the term on the right will always be

positive . Hence, Sri > Sno An

⇒ Yezd Pty ( TxEn) 3yEzd PI
'

to .cn) .

This completes the proof of lemma 3
.

I
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