Two sample test of means (variance equal)

Let $n, m \ge 1, X_1, X_2, \dots, X_n$ be i.i.d. Normal (μ_X, σ_1^2) and Y_1, Y_2, \dots, Y_m be i.i.d. Normal (μ_Y, σ_2^2) .

Equal Variance: $\sigma_1 = \sigma_2$

Test Statistic:

$$T := \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_Y)}{S_{pooled}\sqrt{\frac{1}{n} + \frac{1}{m}}} = \frac{\text{Observed} - \text{Expected}}{\text{Standard Error}}$$

where

$$S_{pooled}^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

 $T \sim t_{n+m-2}$

Two Sample-test (Welch approximation)

Let $n, m \ge 1, X_1, X_2, \dots, X_n$ be i.i.d. Normal (μ_X, σ_1^2) and Y_1, Y_2, \dots, Y_m be i.i.d. Normal (μ_Y, σ_2^2) .

Unequal Variance: $\sigma_1 \neq \sigma_2$

Test Statistic:

$$T := \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_Y)}{S_{pooled}}$$

where s

$$S_{pooled}^2 = \frac{S_X^2}{n} + \frac{S_Y^2}{m}$$

$$T \sim t_d$$
 with $d = \left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2 \cdot \left(\frac{1}{n-1}\left(\frac{S_X^2}{n}\right)^2 + \frac{1}{m-1}\left(\frac{S_Y^2}{m}\right)^2\right)^{-1}$.

Test of means: Paired Samples

Let $n \ge 1$, X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n betwo samples, that are paired. Then the

Test Statistic:

$$T := rac{ar{X} - ar{Y} - (\mu_x - \mu_Y)}{rac{S}{\sqrt{n}}}$$

where

$$S^2 = \frac{1}{n-1} (\sum_{i=1}^n (z_i - \bar{z})^2)$$
 with $z_i = x_i - y_i$

 $T \sim t_{n-1}$

We can think of it as single sample test of equality of means with data from $x_i - y_i$.

Analysis of Variance One way

I - treaments and J- population in each treatment.

Model: $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$ with errors ϵ_{ij} being independent Normal $(0, \sigma^2)$ and differential effect $\sum_{i=1}^{I} \alpha_i = 0$

Null Hypothesis: $\alpha_1 = \alpha_2 = \ldots = \alpha_I = 0$

Alternative Hypothesis: One of the α_i differ from 0.

Analysis of Variance One way

I - treaments and J- population in each treatment.

Total Sum of squares :=
$$\sum_{i=1}^{I} \sum_{j=1}^{J} (y_{ij} - \bar{y})^2$$

= $\sum_{i=1}^{I} \sum_{j=1}^{J} (y_{ij} - \bar{y}_{i\cdot})^2 + J \sum_{i=1}^{I} (\bar{y}_{i\cdot} - \bar{y})^2$

:= Sum of squares within treatment groups

+ Sum of squares between treatment groups

In Short:

$$SS_{total} = SS_W + SS_B$$

Analysis of Variance One way

I - treaments and J- population in each treatment.

Test Statistic:

$$F := \frac{SS_{B}/(I-1)}{SS_{W}/(I(J-1))}$$

where $F \sim F(I-1, I(J-1))$

Decide on $\boldsymbol{\alpha}$

Calculate *p*-value : =
$$P\left(F(I-1, I(J-1)) > \frac{SS_B/(I-1)}{SS_W/(I(J-1))}\right)$$

Reject Null Hypothesis if *p*-value is less that α