- Many Data consists of 2 variables.
 - One of them is a Dependent variable, sometimes referred to as Response variable
 - One of them being a independent variable, sometime referred to as Predictor or Explanatory variable.
- There are situations when there is one response variable and multiple explanatory variables. We will not discuss them today.
- We will focus on Bivariate Data.

• Maternal Smoking and its effect on Birth Weight.

• Attendance in Classes and its effect on Scores in an Exam.

• Age and Heart rate

• Effect of Vitamin C on Toothgrowth

> y = read.table("dengue.csv", header=TRUE)

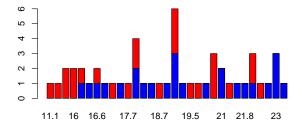
The dataset is of 50 Dengue pediatric patients at Manipal hospital. The patient's:

- BICARB reading is taken at admission.
- End resulting DIAGNOSIS is either severe form of Dengue Shock Syndrome (DSS) or milder form of Dengue (D).

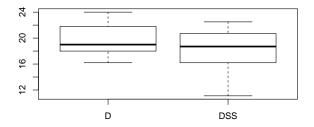
>	> head(y)									
	DIAGNOSIS	BICARB								
1	DSS	16.2								
2	DSS	22.0								
3	DSS	16.0								
4	DSS	21.3								
5	DSS	19.0								
6	DSS	18.7								

> tail(y)

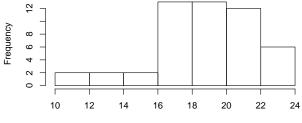
	DIAGNOSIS	BICARB
45	D	22.0
46	D	16.6
47	D	18.3
48	D	23.0
49	D	24.0
50	D	21.0


- > Diagnosis = y\$DIAGNOSIS
- > Marker = y\$BICARB

The table command will summarize Bivariate Data as well.

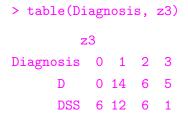

> table(Diagnosis, Marker)

Ν	larkei	r -																			
Diagnosis	11.1	11.	7 1	4 16	16	5.2 1	6.3	16	6	17	17	.4 :	17.6	17.7	18	18	3.2	18.3	3 1	8.7	
D	0		0) (1	1		1	1		0	1	0	2		1		L	0	
DSS	1		1 :	2 2		1	0		1	0		1	0	1	. 2		0	()	1	
Marker																					
Diagnosis	18.9	19	19.3	3 19	.5	19.9	20	.5 2	20.	7 2	21 1	21.3	3 21	6 21	.8	22	22.	5 23	2.7	23	24
D	1	3		1	0	C		1		0	2	(C	1	1	1		0	1	3	1
DSS	0	3		C	1	1		0		3	0	1	1	0	0	2		1	0	0	0

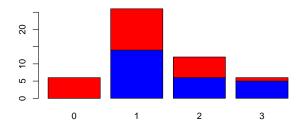

> barplot(table(Diagnosis, Marker), col = c("blue", "Red"))

> plot(Diagnosis, Marker)

> hist(Marker)

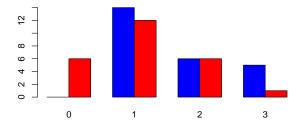


Histogram of Marker

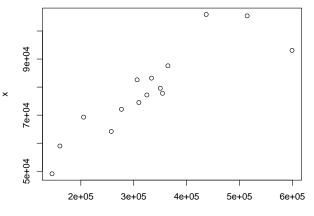

Marker

We can categorize the data in to say 0,1,2,3

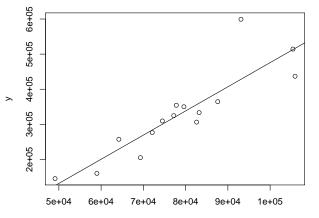
- > z = replace(Marker, Marker <= 16,0)</pre>
- > z1 = replace(z, 16< z & z<=20,1)
- > z2 = replace(z1, 20< z1 & z1<=22,2)</pre>
- > z3 = replace(z2, 22< z2,3)</pre>



> barplot(table(Diagnosis, z3), col = c("blue", "Red"))


- Barplot plots each row of data.
- Stacked manner is the default,
- It can be beside each other (by setting option beside=TRUE).

- > barplot(table(Diagnosis, z3), col = c("blue", "Red"),
- + beside=TRUE)


- > require(UsingR)
- > data(home)
- > head(home)
 - old new
- 1 64200 257500
- 2 72100 276800
- 3 87600 364600
- 4 59000 160400
- 5 83200 333500
- 6 49100 145600
- > x = home\$old
- > y = home\$new

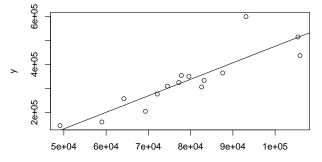
> plot(y,x)

y

There could be a Linear Relationship between y and x.

We can use the inbuilt function 1m

- > residual = lm(y~x)
- > residual


Call:

lm(formula = y ~ x)

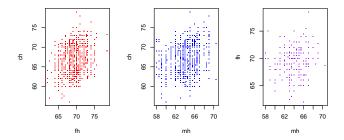
Coefficients: (Intercept) x -2.121e+05 6.879e+00

We can use the inbuilt function lm

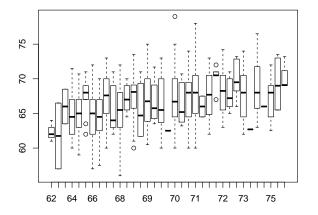
- > plot(y~x)
- > abline(lm(y~x))

Consider the following dataset in HistData in UsingR by F. Galton.

> head(GaltonFamilies)


	family	father	mother	midparentHeight	children	childNum	gender	childHeight
1	001	78.5	67.0	75.43	4	1	male	73.2
2	001	78.5	67.0	75.43	4	2	female	69.2
3	001	78.5	67.0	75.43	4	3	female	69.0
4	001	78.5	67.0	75.43	4	4	female	69.0
5	002	75.5	66.5	73.66	4	1	male	73.5
6	002	75.5	66.5	73.66	4	2	male	72.5

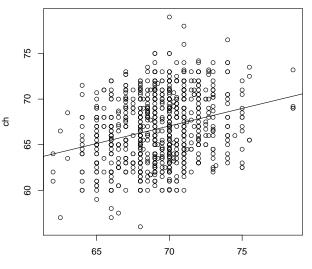
Consider the following dataset in HistData in UsingR by F. Galton.


- > require(UsingR)
- > mh = GaltonFamilies\$mother
- > head(mh)
- [1] 67.0 67.0 67.0 67.0 66.5 66.5
- > fh = GaltonFamilies\$father
- > head(fh)
- [1] 78.5 78.5 78.5 78.5 75.5 75.5
- > ch = GaltonFamilies\$childHeight
- > head(ch)

 $[1] \ 73.2 \ 69.2 \ 69.0 \ 69.0 \ 73.5 \ 72.5$

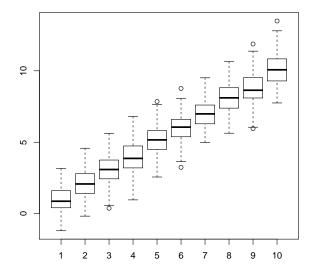
- > par(mfrow=c(1,3))
- > plot(ch~fh, pch=".", col="Red")
- > plot(ch~mh, pch=".", col="Blue")
- > plot(fh~mh, pch=".", col="green")

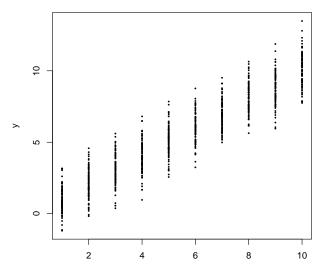
> boxplot(ch^{fh})


> res = lm(ch~fh)

> res

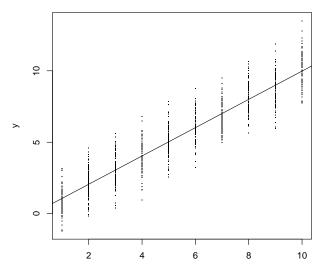
Call:


lm(formula = ch ~ fh)


Coefficients: (Intercept) fh 40.1393 0.3845

fh

- > x = rep(1:10, each = 100)
- > y = rnorm(1000, mean = x, sd=1)



х

- > res = $lm(y^x)$
- > res
- Call:
- lm(formula = y ~ x)

Coefficients: (Intercept) x 0.08185 0.98977

х