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Abstract
Historical daily data for eleven years of the fifty constituent stocks of the NIFTY 
index traded on the National Stock Exchange have been analyzed to check for the 
stylized facts in the Indian market. It is observed that while some stylized facts of 
other markets are also observed in Indian market, there are significant deviations 
in three main aspects, namely leverage, asymmetry and autocorrelation. Leverage 
and asymmetry are both reversed making this a more promising market to invest in. 
While significant autocorrelation observed in the returns points towards market inef-
ficiency, the increased predictive power is better for investors.

Keywords  National stock exchange · Volatility clustering · Leverage effect · Heavy 
tails · Power law

JEL Classification  C58 · G15 · C55
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1  Introduction

Any stock market deals with the trading of shares of stocks which involves inher-
ent uncertainty. Because of the huge amounts of money involved, economists use 
different tools and measures to develop models for stock prices. These models 
are then used for portfolio selection, risk management, derivative pricing etc. It 
becomes important to analyze and test the accuracy of the model before putting 
it to use. There are some properties of stocks which are common across markets, 
irrespective of the nature of the stock. They have been identified after observing 
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that a large volume of data, across markets and time periods, follow these prop-
erties. These properties are known as the stylised facts. They provide a starting 
point for economic models of the stock price. It is reasonable to expect the prices 
arising from any acceptable model to follow at least these properties.

Stylized facts are well studied in the literature. The paper Cont (2001), on the 
empirical properties of asset returns lists such stylized facts. The current litera-
ture on the presence and identification of these facts is reviewed in Thompson 
(2013). The stylized facts that are observed frequently are heavy tails, volatility 
clustering, slow decay of auto-correlation in absolute returns and leverage effect. 
Absence of simple arbitrage, power law decay of the tails of the return distribu-
tion and volatility clustering are studied in Cristelli (2014). Three models used 
for modelling and forecasting volatility, namely, the standard GARCH, Exponen-
tial GARCH, and the Autoregressive Stochastic Volatility model are studied in 
Malmsten and Teräsvirta (2010). It is found that none of the models dominate the 
others when it comes to reproducing stylized facts.

There has been comparatively less work in stylized facts in the emerging 
markets and in particular on the Indian market. As it is seen in other aspects of 
market behaviour, the emerging markets often behave very differently from the 
developed markets. For example, in contrast to the stylized fact about heavy tails, 
the KOSPI index of the Korean stock market was found to follow an exponen-
tial distribution, see Oh et al. (2006). The trend of investments is accelerating in 
the Indian market as a result of regulatory reforms and removal of other barriers 
for the international equity investments. This increased momentum is expected 
to show up in the price dynamics. In India, the emergence and growth of deriva-
tive market is relatively a recent phenomenon. Since its inception in June 2000, 
derivatives market has exhibited exponential growth both in terms of volume and 
number of traded contracts. Also, NSE is pure order driven market. Most markets 
like NYSE and NASDAQ are a hybrid of order and quote driven. For all these 
reasons, it is important to explore, on a large scale, the behavior of the Indian 
market. Kumar and Misra (2018) studies the liquidity aspect of the Indian market 
and finds a lot of commonality. Mukherjee et al. (2011) studies the stylized facts 
based on only the BSE SENSEX index. Although the index is a good proxy for 
the market, it is not sufficient to capture the nature of the individual stocks.

In this paper, daily data for eleven years on fifty individual stocks traded in the 
National Stock Exchange (NSE) have been analyzed. Eight stylized facts out of 
the listed eleven in Cont (2001) are studied because the remaining three involve 
intra-day data. Statistical package R is used for the analysis.

The rest of the paper is organized as follows. In Sect. 2 the data set is described. 
Section 3 explores simple distributional properties of log returns, namely asym-
metry, normality and leverage. Section  4 studies the time series properties of 
returns, squared returns and absolute returns. In Sects. 5 and 6, heavy tails and 
conditional heavy tails of the series are studied. In each section we state the styl-
ized fact and present the inferences, along with technical details on how the anal-
ysis is done. Section 7 concludes the work that is done and offers possible areas 
to apply these findings.
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2 � Description of Data

The historical data is downloaded from investing.com. Fifty stocks that are traded 
in the National Stock Exchange (NSE) are considered. The stocks are the con-
stituents of the NIFTY index. For each stock the data contains seven attributes for 
each trading day, namely, the date, closing price, opening price, the highest price, 
lowest price, volume traded and the change percentage on that day. These were 
taken over the time range of January 2007 to November 2017. The plot of prices 
of the Bosch Ltd (BOSH) stock is shown in Fig. 1. Since the prices are often non-
stationary, it is more common to use log returns for statistical analysis. The log 
return of a stock R(t) at time t is given by

where S(t) denotes price of stock at time t. For the rest of the paper we deal with the 
log return and not the prices. For illustrative purpose, the log returns for the Bharat 
Petroleum Corporation Limited (BPCL) stock are shown in Fig. 2. A visual com-
parison with Fig. 1 shows that the concern of non-stationarity has been addressed.

R(t) = log(S(t)) − log(S(t − 1))

Fig. 1   Prices of bosch
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3 � Simple Distributional Properties

In this section we explore the simple stylized facts related to the distribution of 
returns, ignoring time series dependence and tail behaviour. In particular, we 
study the symmetry and normality of the distribution, as well as the inter-depend-
ence of the return and volatility.

3.1 � Gain Loss Asymmetry

A common stylized fact is the gain loss asymmetry. One observes large draw-
downs in stock prices and stock index values but not equally large upward move-
ments. The skewness of a random variable X is the third standardized moment 
and is denoted by �1.

where � = E(X) is the mean of the distribution. Skewness measures the asymmetry 
of the probability distribution of a random variable. A positive skew distribution 
means that the right tail is longer than the left tail. A negative skew distribution 

�1 =
E(X − �)3

(
√
E(X − �)2)

3

2

,

Fig. 2   Log returns of BPCL
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means that the left tail is longer. Large drawdowns compared to upward movements 
would correspond to a long left tail and hence, a negatively skewed curve.

For the data set under consideration, skewness of the returns was calculated. Most 
stocks have positive skewness as shown in Fig. 3.

It is observed that most stocks have positive skewness and thus show larger 
upward movements than drawdowns. This is in contrast with the stylized facts 
reported in Cont (2001). In Huang and Zhang (2014), the authors compare asymme-
try indices of historical prices from ten stock markets using market index data. They 
find that in most stock markets, price fall is faster than price rise; while in China and 
India, price rise is generally faster than price fall. Our results reconfirm this for the 
Indian market at the stock level.

3.2 � Aggregational Gaussianity

The next stylized fact is aggregated Gaussianity, which is the following phenom-
enon. As one increases the time scale Δ t over which returns are calculated, their 
distribution looks more and more like a normal distribution. In particular, the shape 
of the distribution is not the same at different time scales.

Two normality tests in R are performed on the data, namely the Kolmogorov-
Smirnov (KS) test and the Shapiro-Wilke (SW) test for daily, weekly, monthly 
and quarterly returns. The p-values increase as the time over which the returns are 

Fig. 3   A plot of the skewness values
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calculated increases. The kernel density plots of these p-values for the 50 stocks under 
consideration are presented in Fig. 4.

It is seen that as the time scale increases, the p-vales are less and less concentrated 
around zero and the normality assumption is rejected for fewer stocks. Thus, the distri-
bution of returns of many stocks become similar to the normal distribution as the time 
over which returns are calculated is lengthened. We conclude that aggregated Gaussi-
anity is present in the data.

3.3 � Leverage Effect

Leverage effect refers to the observation that most measures of volatility of an asset are 
negatively correlated with the returns of that asset. If there is high volatility in the stock 
movement, then the returns will be low. The rationale behind this is that if there is a lot 
of fluctuating movement of the stock price, not many investors will invest in the stock.

The correlation between returns and squared returns is calculated. Figure 5 shows 
a density plot (for all fifty stocks) of the correlation between volatility and returns. It 
is expected to be negative, but is found to be positive. Thus the observed results are 
contrary to the fact stated in Cont (2001).

4 � Time Series Dependence

In this section we explore the time series properties of the returns. In particular, 
we look at the autocorrelation of returns, absolute returns and squared returns. 
We start with some definitions. The autocorrelation of a stationary time series 
Xt, t = 1,⋯ , T  , denoted by �X is defined as a function of the lag as.

Fig. 4   Kernel density plots of p-values of SW (left) and KS (right) tests for daily, weekly, monthly and 
quarterly (from top to bottom) returns
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Here �X and �2
X
 are respectively the mean and variance of Xs . Due to stationarity, �X , 

�2
X
 and �X(k) do not depend on s. The autocorrelation of a time series measures the 

linear correlation between the original time series ( Xs ) and the lagged series ( Xs+k ). 
The autocorrelation depends on the lag k. For example, the autocorrelation of a time 
series X with the daily returns of a stock with lag 1 would indicate how much a 
day’s return influences the next day’s return, or how much a day’s return depends on 
the previous day’s return.

The auto-covariance �X(k) of a time series X is given by

Partial autocorrelation �X(k) measures the influence of the value at a given instant 
on the value at the instant at lag k, controlling for the effect of intermediate values. 
That is,

4.1 � Autocorrelation of Returns

The stylized fact is that autocorrelations of asset returns are often insignificant, except 
for very small intraday time scales for which microstructure effects come into play. This 

�X(k) = cor(Xs,Xs+k) =
E(Xs − �X)(Xs+k − �X)

�2
X

.

�X(k) = cov(Xs,Xs+k) = E((Xs − �X)(Xs+k − �X))

�X(k) = cor(Xs,Xs+k|Xs+1,⋯ ,Xs+k−1).

Fig. 5   Correlation between returns and volatility
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fact is the reason why investing in stocks is risky. This is why it is difficult to predict 
the future stock prices. If the returns were correlated, then it would mean that the return 
values are dependent on previous return values, and the correlation coefficient can be 
used to determine the expected value of the future return and hence price.

Here the autocorrelation and partial autocorrelation for all the 50 series has been 
calculated for the returns of the stocks using a lag of 10. These quantities are estimated 
using the method of moments estimators. For demonstrative purpose, Fig. 6 shows the 
partial autocorrelation (PACF) values for the Maruti Suzuki India Ltd (MRTI) stock. 
The dashed lines mark the 5% significance levels. Observe that all partial autocorrela-
tion upto order 10 are insignificant.

For a formal evaluation, the Portmanteau tests are carried out to test the hypothesis 
that all autocorrelations upto a certain lag are zero. These tests are to determine lack 
of fit of the data. That is, they determine how close the data are to white noise. It gives 
a measure of how much one value depends on the previous value(s). There are two 
Portmanteau tests: Box-Pierce and Ljung-Box. Both tests give similar results. So we 
present the results for the Ljung-Box test only.

The Ljung-Box test statistic is given by

(1)Q = n(n + 2)

m∑

k=1

𝜌̂2
k

n − k

Fig. 6   Partial autocorrelation values for MRTI
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Here this variable Q is follows a �2 distribution with m degrees of freedom under 
the null hypothesis. Here n is the total number of observations, m is the maximum 
lag up to which autocorrelation is determined.

Using a maximum lag of 10 and level of significance 1%, the null hypothesis is 
rejected for 22 stocks out of 50. This implies that there is some autocorrelation in 
many of the stocks under consideration. This is again at variance with the observa-
tions from other markets and can potentially be useful to predict future prices, giv-
ing rise to arbitrage opportunities.

4.2 � Volatility Clustering

Different measures of volatility display a positive autocorrelation over several days, 
which quantifies the stylized fact that high-volatility events tend to cluster in time. If 
there is volatility clustering, it means that there is some significant autocorrelation 
in the volatility of the stocks, so that the values depend on the previous values and 
tend to be similar over time. So if the volatility on one day is high, then that will 
cause the volatility to remain high over the subsequent days. One measure of the 
volatility of a stock is the variance of the returns. On calculating the average return 
( � ) for all the stocks, most stocks had average return close to zero. So for this data 
set the squared returns can be considered as a fairly accurate measure of volatility.

The autocorrelation of squared returns was calculated for a lag upto 10 and for-
mal hypothesis tests are conducted using absence of autocorrelations between 
squared returns as null hypothesis and test statistic: X =

√
n𝜌̂

1−𝜌̂2
 where n is the number 

of observations, and 𝜌̂ is the estimated autocorrelation. Under the null hypothesis, X 
follows a standard normal distribution asymptotically. This can be used to compute 
the p-value of the test. Majority of p-values were less than 5%. The plots of p-values 
of the squared returns of HDFC Bank (HDFC) stock is shown in Fig. 7. Portmanteau 
tests were also conducted. All the stocks show a non-zero autocorrelation between 
the squared returns. The autocorrelation at lag one is positive in almost all cases.

In summary, the data does display volatility clustering, as expected.

4.3 � Slow Decay of Autocorrelation in Absolute Returns

The autocorrelation function of absolute returns decays slowly as a function of the 
time lag, roughly as a power law with an exponent � ∈ [0.2, 0.4] . This stylized fact 
means that the effect of absolute returns on the future values does not wear off soon. 
This is sometimes interpreted as an indication of long-range dependence.

To find the tail index, a power law has to be fitted for autocorrelation with the lag 
values. A linear regression is fitted for the logarithm values of autocorrelation (ac) 
and lag (l). The power law will be of the form ac = kl� , for some proportionality 
constant k. Taking logarithm on both sides,

The slope of the regression line is the exponent of the power law. The negative 
reciprocal of this exponent gives the tail index.

(2)log(ac) = � log(l) + log(k)
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Fig. 7   p-values for ACF of squared returns of HDFC

Fig. 8   Plot of tail index
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The tail index of autocorrelation with lag was computed. The values are shown 
in Fig. 8. The stocks do have slow decay of autocorrelation with the exponent in the 
expected range.

5 � Heavy Tails

The stylized fact regarding tails states that the distribution of returns seems to display a 
power-law or Pareto-like tail, with a tail index which is finite, higher than two and less 
than five.

A power law is a functional relationship between two variables, where the relative 
change in one variable is proportional to the relative change in the other. It is of the 
form

where X and Y are variables of interest, � is the law’s exponent and k is a constant. 
Pareto Law is a special power law, also known as distributional power law, where Y 
is the probability involving a random variable. For example,

is a Pareto Law. The exponent � is independent of the units in which the law is 
expressed.

Distributions of random variables are studied in comparison with the exponential 
distribution. The tail of a distribution is the part of the distribution where |X| tends to 
∞ . The thickness of the tail is the tail index. Distributions can be classified as being 
heavy tailed or light tailed. A heavy-tailed distribution has a tail that is not bounded by 
the exponential tail, whereas the light-tailed distribution has a tail that falls below the 
exponential tail. Here we look only at the tail and not the part of the distribution before 
where the tail begins. The choice of the point in the distribution where the tail begins is 
also important in determining tail index. Consider any distribution P(X) with cumula-
tive distribution function F(x) = 1 − F(x) defined by Pr(X > x) = F(x) , such that for 
some � >0,

where L(x) is some slowly varying function for large x. The tail index of the fat-
tailed distribution P(X) is by definition �.

Using the hill.adapt() function in the extremefit package of R, the tail index is cal-
culated. The values for all 50 stocks are shown in Fig. 9. It is observed that the returns 
indeed have heavy tails and the index is found to lie between two and five.

Y = kX�

P(S > x) =
k

x𝜁

F(x) = x
−

1

� L(x)
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6 � Conditional Heavy Tails

The final stylized fact that we look at is conditional heavy tails. Even after correct-
ing returns for volatility clustering (e.g. via GARCH-type models), the residual time 
series still exhibit heavy tails. However, the tails are less heavy than in the uncondi-
tional distribution of returns.

As seen in Sect. 4.2 there is volatility clustering in financial time series. This can 
lead to heavy tails of the return distribution observed in Sect. 5. One approach to 
avoid the heavy tails is to model the volatility process itself as a time series to cap-
ture the clustering behaviour of volatility. This is generally achieved though ARCH 
and GARCH models.

The general time series model in statistical analysis is:

Here, �t is the conditional mean of the series, that is, �t = E[Xt|Xt−1,Xt−2,⋯] and �t 
is a disturbance term. In traditional time series analysis, the disturbance term is usu-
ally assumed to be a White Noise innovation, and the conditional mean is expressed 
as a function of past observations:

where �t is a White Noise innovation. Under these assumptions, the conditional mean 
of Xt is non-constant and time dependent, but the conditional variance is a fixed 
quantity and equal to the marginal variance. In other words, there is some short-
term memory in the mean, but not in the variance. We are seeking an enhanced 

(3)Xt = �t + �t.

(4)Xt = �0 + �1Xt−1 +⋯ + �pXt−p + �t,

Fig. 9   Tail Index of returns
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formulation that allows for non-constant conditional variance. One possibility is to 
decompose the disturbance term as �t = �tWt , where �t is the conditional standard 
deviation and Wt is a White Noise innovation. If it is assumed that �t is a function 
of previous instances, we obtain a process that also has short-term memory in the 
variance and hence can be used for volatility modeling. Because �t is a (conditional) 
standard deviation, it needs to be made sure that the function of previous instances 
is non-negative. That is cumbersome to achieve with linear combinations, because 
coefficient restrictions are always awkward. Instead, it is more popular to work with 
non-linear variance function models. One such model is the ARCH (Autoregressive 
Conditional Heteroscedastic) model. A series �t is said to follow a first-order autore-
gressive conditional heteroscedastic process,or short, is ARCH(1), if

Here Wt is a White Noise innovation process, with mean zero and unit variance. 
The two parameters are the model coefficients. There are some disadvantages of the 
ARCH model. The model assumes that positive and negative shocks have the same 
effects on volatility. In practice, it is well known that asset prices respond differ-
ently to positive and negative shocks. It is restrictive in the sense that �1 should be 
in(0, 1∕

√
3 ) for a finite fourth moment. Thus a large number of extensions of the 

standard ARCH model have been suggested, see Engle et al. (2012) for a review. For 
a GARCH(p,  q) model (generalized autoregressive conditional heteroscedasticity) 
the variance is given by

(5)�t = �tWt with �2
t
= �0 + �1�

2
t−1

.

(6)�2
t
= �0 + �1�

2
t−1

+⋯ + �q�
2
t−q

+ �1�
2
t−1

+⋯ + �p�
2
t−p

Fig. 10   Tail Index of GARCH fitted returns
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The following constraints are required on the parameters. For positivity we need 
𝛽0 > 0;𝛽1,⋯ , 𝛽q−1 ≥ 0;𝛽q > 0;𝛾1,⋯ , 𝛾p−1 ≥ 0;𝛾p > 0 and for stationarity we need 
𝛽1 +⋯ + 𝛽q + 𝛾1 +⋯ + 𝛾p < 1.

Tail index is found for GARCH-fitted residuals. The tails are still heavy and 
GARCH fitting seems to have no effect on the estimated tail index. This is shown in 
Fig. 10.

7 � Conclusion

Stylized facts for a large number of stocks of the Indian stock market were studied. 
After a brief survey of the literature on stylized facts, the data is described. Then, the 
facts were analyzed using the basic functions and toolboxes provided in R. Based on 
the observations made, certain inferences are drawn and stated.

Among the accepted stylized facts, the ones that are found in the Indian market 
are aggregated Gaussianity, volatility clustering, power law decay of autocorrelation 
of absolute returns with exponent in the rage 0.2 to 0.4, heavy tails with an index 
between 2 and 5. In particular this excludes stable laws with infinite variance and the 
normal distribution. However the precise form of the tails is difficult to determine.

There are some significant deviations of the Indian data from the stylized facts 
listed for developed markets. We have found difference in three aspects: leverage, 
autocorrelation and asymmetry. Also, the tail-index is not reduced by GARCH-
fitting in most cases. The significance of these differences are discussed separately 
below.

The gain loss asymmetry in reversed from what is seen in developed markets. For 
the Indian market the distribution of returns is positively skewed most stocks show 
larger upward movements than drawdowns. The same phenomenon is also observed 
for European emerging markets in Karpio et  al. (2007). This is advantageous for 
investors as the waiting time for a specific amount of gain is shorter than that for the 
same amount of loss.

The leverage effect is reversed for most stocks, that is, the returns and volatility 
are positively correlated. The leverage effect was first discussed by Black (1976) 
who observed that the volatility of stocks tends to increase when the price drops. 
Empirical evidence of negative leverage has been documented widely, for eg., see 
Bouchaud et al. (2001). Asymmetric GARCH models have been developed to cap-
ture negative leverage and feedback effects. In the Indian market, we see positive 
leverage. Hence, there is a need for new explanations and new models. Since both 
the leverage effect and gain/loss asymmetry share many common features, Ahlgren 
et al. (2007) attempts to link them together.

22 out of 50 stocks show significant autocorrelation in the returns. Autocorrela-
tion of returns points towards market inefficiency. More detailed study needs to be 
done in the lines of Poterba and Summers (1988). It is necessary to find the cause 
and direction of auto-correlation. For eg, large proportion of noise trading and short-
term investors may lead to mean-reversion. For investors, autocorrelation in return 
is better than random walk as past returns have predictive power over future returns 
and can be captured and used for investment decisions.
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This analysis can be used to decide what to test for in a predictor model for the 
Indian data. Several new investment techniques can be devised using the leverage, 
asymmetry and autocorrelation, that are different from those used in other markets.
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