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Introduction

I Any stock market deals with the trading of shares of stocks
which involves inherent uncertainty.

I Because of the huge amounts of money involved, economists
use different tools and measures to develop models for stock
prices.

I These models are then used for portfolio selection, risk
management, derivative pricing etc.



Introduction

I Stylized facts are properties that are common across various
markets and time domains. These properties offer a way to
generalize stock price behavior irrespective of the instruments
used.

I It is reasonable to expect the prices arising from any
acceptable model to follow at least these properties.

I Lists of several such stylized facts are available in the
literature for the developed western markets.

I In [3] we explore these properties for the Indian market.



Description of data

I The historical data is downloaded from yahoo finance.

I Fifty stocks that are traded in the National Stock
Exchange(NSE) are considered. The stocks are the
constituents of the NIFTY index.

I For each stock the data contains seven attributes for each
trading day, namely, the date, closing price, opening price, the
highest price, lowest price, volume traded and the change
percentage on that day.

I These were taken over the time range of January 2007 to
November 2017.



Date Close Open High Low Vol. Change %

Nov 30, 2017 400.4 399.25 401.3 397.1 611.03K -0.76

Nov 29, 2017 403.45 397.6 405.6 395.05 5.21M 1.64

Nov 28, 2017 396.95 399.6 403.65 395.2 6.01M -0.64

Nov 27, 2017 399.5 404.5 404.5 398 2.99M -1.26

Nov 24, 2017 404.6 411 411 401.85 1.37M -0.61

Nov 23, 2017 407.1 415.3 415.3 402.55 3.90M -1.79

Nov 22, 2017 414.5 402.5 416.65 401.65 5.17M 3.42

Nov 21, 2017 400.8 399.3 405.85 399.3 5.42M 0.55

Nov 20, 2017 398.6 400.95 405.9 397.1 4.44M -0.59

Nov 17, 2017 400.95 401 405 396 6.52M 0.94

Nov 16, 2017 397.2 408 410.6 395 5.32M -2.43

Nov 15, 2017 407.1 410 414.25 403.65 1.85M -0.89

Nov 14, 2017 410.75 413.35 417.85 406.7 2.33M -0.63



Figure 1: Prices of Bosch



I Since the prices are often non-stationary, it is more common
to use log returns for statistical analysis.

I The log return of a stock R(t) at time t is given by

R(t) = log(S(t))− log(S(t − 1))

where S(t) denotes price of stock at time t.

I For the rest of the paper we deal with the log return and not
the prices.

I For illustrative purpose, the log returns for the Bharat
Petroleum Corporation Limited (BPCL) stock are shown in
Figure 2.

I A visual comparison with Figure 1 shows that the concern of
non-stationarity has been addressed.



Figure 2: Log Returns of BPCL



Simple Distributional properties

I First we explore the simple stylized facts related to the
distribution of returns.

I We ignore time series dependence and tail behaviour.

I In particular, we study the symmetry and normality of the
distribution, as well as the inter-dependence of the return and
volatility.



Gain loss asymmetry

I A common stylized fact is the gain loss asymmetry. One
observes large drawdowns in stock prices and stock index
values but not equally large upward movements.

I The skewness of a random variable X is the third standardized
moment and is denoted by γ1.

γ1 =
E (X − µ)3

(
√

E (X − µ)2)
3
2

,

where µ = E (X ) is the mean of the distribution.

I Skewness measures the asymmetry of the probability
distribution of a random variable.



Introduction

I A positive skew distribution means that the right tail is longer
than the left tail. A negative skew distribution means that the
left tail is longer.

I Large drawdowns compared to upward movements would
correspond to a long left tail and hence, a negatively skewed
curve.

I For the data set under consideration, skewness of the returns
was calculated.

I Most stocks have positive skewness as shown in Figure 3.



Figure 3: A plot of the skewness values.



I It is observed that most stocks have positive skewness and
thus show larger upward movements than drawdowns. This is
in contrast with the stylized facts reported in [1].

I In [2], the authors compare asymmetry indices of historical
prices from ten stock markets using market index data. They
find that in most stock markets, price fall is faster than price
rise; while in China and India, price rise is generally faster
than price fall.

I Our results reconfirm this for the Indian market at the stock
level.



Aggregational Gaussianity

I The next stylized fact is aggregated Gaussianity, which is the
following phenomenon. As one increases the time scale ∆t
over which returns are calculated, their distribution looks
more and more like a normal distribution.

I In particular, the shape of the distribution is not the same at
different time scales.

I Two normality tests in R are performed on the data, namely
the Kolmogorov-Smirnov (KS) test and the Shapiro-Wilke
(SW) test for daily, weekly, monthly and quarterly returns.

I The p-values increase as the time over which the returns are
calculated increases. The kernel density plots of these
p-values for the 50 stocks under consideration are presented in
Figure 4.



Figure 4: Kernel density plots of p-values of SW (left) and KS (right)
tests for daily, weekly, monthly and quarterly (from top to bottom)
returns.



Aggregational Gaussianity

I It is seen that as the time scale increases, the p-vales are less
and less concentrated around zero and the normality
assumption is rejected for fewer stocks.

I Thus, the distribution of returns of many stocks become
similar to the normal distribution as the time over which
returns are calculated is lengthened. We conclude that
aggregated Gaussianity is present in the data.



Leverage Effect

I Leverage effect refers to the observation that most measures
of volatility of an asset are negatively correlated with the
returns of that asset.

I If there is high volatility in the stock movement, then the
returns will be low.

I The rationale behind this is that if there is a lot of fluctuating
movement of the stock price, not many investors will invest in
the stock.

I The correlation between returns and squared returns is
calculated. Figure 5 shows a density plot (for all fifty stocks)
of the correlation between volatility and returns.

I It is expected to be negative, but is found to be positive.
Thus the observed results are contrary to the fact stated in [1].



Figure 5: Correlation between returns and volatility.



Time Series Dependence

I The autocorrelation of a stationary time series
Xt , t = 1, · · · ,T , denoted by ρX is defined as a function of
the lag as.

ρX (k) = cor(Xs ,Xs+k) =
E (Xs − µX )(Xs+k − µX )

σ2X
.

Here µX and σ2X are respectively the mean and variance of Xs .
Due to stationarity, µX , σ2X and ρX (k) do not depend on s.

I The autocorrelation of a time series measures the linear
correlation between the original time series (Xs) and the
lagged series (Xs+k).



Autocorrelation of returns

I The autocorrelation depends on the lag k . For example, the
autocorrelation of a time series X with the daily returns of a
stock with lag 1 would indicate how much a day’s return
influences the next day’s return, or how much a day’s return
depends on the previous day’s return.

I Partial autocorrelation φX (k) measures the influence of the
value at a given instant on the value at the instant at lag k,
controlling for the effect of intermediate values. That is,

φX (k) = cor(Xs ,Xs+k |Xs+1, · · · ,Xs+k−1).



Autocorrelation of returns

I The stylized fact is that autocorrelations of asset returns are
often insignificant, except for very small intraday time scales
for which microstructure effects come into play.

I This fact is the reason why investing in stocks is risky. This is
why it is difficult to predict the future stock prices.

I If the returns were correlated, then it would mean that the
return values are dependent on previous return values, and the
correlation coefficient can be used to determine the expected
value of the future return and hence price.



Autocorrelation of returns

I Here the autocorrelation and partial autocorrelation for all the
50 series has been calculated for the returns of the stocks
using a lag of 10.

I These quantities are estimated using the method of moments
estimators.

I For demonstrative purpose, Figure 6 shows the partial
autocorrelation (PACF) values for the Maruti Suzuki India Ltd
(MRTI) stock. The dashed lines mark the 5% significance
levels. Observe that all partial autocorrelation upto order 10
are insignificant.



Figure 6: Partial autocorrelation values for MRTI.



I For a formal evaluation, the Portmanteau tests are carried out
to test the hypothesis that all autocorrelations upto a certain
lag are zero. These tests are to determine lack of fit of the
data. That is, they determine how close the data are to white
noise.

I This gives a measure of how much one value depends on the
previous value(s).

I There are two Portmanteau tests: Box-Pierce and Ljung-Box.
Both tests give similar results. So we present the results for
the Ljung-Box test only.



I The Ljung-Box test statistic is given by

Q = n(n + 2)
m∑

k=1

ρ̂2k
n − k

(1)

I Here this variable Q is follows a χ2 distribution with m
degrees of freedom under the null hypothesis. Here n is the
total number of observations, m is the maximum lag up to
which autocorrelation is determined.

I Using a maximum lag of 10 and level of significance 1%, the
null hypothesis is rejected for 22 stocks out of 50.

I This implies that there is some autocorrelation in many of the
stocks under consideration. This is again at variance with the
observations from other markets and can potentially be useful
to predict future prices, giving rise to arbitrage opportunities.



Volatility Clustering

I Different measures of volatility display a positive
autocorrelation over several days, which quantifies the stylized
fact that high-volatility events tend to cluster in time.

I If there is volatility clustering, it means that there is some
significant autocorrelation in the volatility of the stocks, so
that the values depend on the previous values and tend to be
similar over time.

I So if the volatility on one day is high, then that will cause the
volatility to remain high over the subsequent days.



Volatility Clustering

I One measure of the volatility of a stock is the variance of the
returns.

I On calculating the average return (µ) for all the stocks, most
stocks had average return close to zero.

I So for this data set the squared returns can be considered as a
fairly accurate measure of volatility.

I The autocorrelation of squared returns was calculated for a
lag upto 10 and formal hypothesis tests are conducted using
absence of autocorrelations between squared returns as null

hypothesis and test statistic: X =
√
nρ̂

1−ρ̂2 where n is the number
of observations, and ρ̂ is the estimated autocorrelation.



Volatility Clustering

I Under the null hypothesis, X follows a standard normal
distribution asymptotically. This can be used to compute the
p-value of the test.

I Majority of p-values were less than 5%. The plots of p-values
of the squared returns of HDFC Bank (HDFC) stock is shown
in Figure 7.

I Portmanteau tests were also conducted. All the stocks show a
non-zero autocorrelation between the squared returns. The
autocorrelation at lag one is positive in almost all cases.



Figure 7: p-values for ACF of squared returns of HDFC.

In summary, the data does display volatility clustering, as expected.



Heavy Tails

I The stylized fact regarding tails states that the distribution of
returns seems to display a power-law or Pareto-like tail, with a
tail index which is finite, higher than two and less than five.

I A power law is a functional relationship between two variables,
where the relative change in one variable is proportional to the
relative change in the other.

I It is of the form
Y = kXα

where X and Y are variables of interest, α is the law’s
exponent and k is a constant.



Heavy Tails

I Distributions of random variables are studied in comparison
with the exponential distribution.

I The tail of a distribution is the part of the distribution where
|X | tends to ∞. The thickness of the tail is the tail index.

I Distributions can be classified as being heavy tailed or light
tailed. A heavy-tailed distribution has a tail that is not
bounded by the exponential tail, whereas the light-tailed
distribution has a tail that falls below the exponential tail.

I Here we look only at the tail and not the part of the
distribution before where the tail begins.

I The choice of the point in the distribution where the tail
begins is also important in determining tail index.



Heavy Tails

I Consider any distribution P(X ) with cumulative distribution
function F (x) = 1− F (x) defined by Pr(X > x) = F (x), such
that for some ξ ¿0,

F (x) = x
−1
ξ L(x)

where L(x) is some slowly varying function for large x .

I The tail index of the fat-tailed distribution P(X ) is by
definition ξ.

I Using the hill.adapt() function in the extremefit package of R,
the tail index is calculated. The values for all 50 stocks are
shown in Figure 8. It is observed that the returns indeed have
heavy tails and the index is found to lie between two and five.



Figure 8: Tail Index of returns.



Conclusion

I Stylized facts for a large number of stocks of the Indian stock
market were studied. After a brief survey of the literature on
stylized facts, the data is described. Then, the facts were
analyzed using the basic functions and toolboxes provided in
R. Based on the observations made, certain inferences are
drawn and stated.

I Among the accepted stylized facts, the ones that are found in
the Indian market are aggregated Gaussianity, volatility
clustering, heavy tails with an index between 2 and 5. In
particular this excludes stable laws with infinite variance and
the normal distribution. However the precise form of the tails
is difficult to determine.



Conclusions

I There are some significant deviations of the Indian data from
the stylized facts listed for developed markets.

I The gain loss asymmetry in reversed, that is, most stocks
show larger upward movements than drawdowns.

I The leverage effect is also reversed for most stocks, that is,
the returns and volatility are positively correlated.

I 22 out of 50 stocks show significant autocorrelation in the
returns. The tail-index is not reduced by GARCH-fitting in
most cases.

I This analysis can be used to decide what to test for in a
predictor model for the Indian data.

I New investment techniques can be devised using the leverage,
asymmetry and autocorrelation, that are different from those
used in other markets.
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