
χ2- goodness of fit test

Some questions:

• Are the dice we roll in our experiments in class really fair ?

• Is getting Dengue(D) or severe form of Dengue (DSS)

independent of BICARB1 reading ?

Rephrase:

• How well the distribution of the data fit the model ?

• Does one variable affect the distribution of the other ?



χ2- goodness of fit test

Specific Question:

• To understand how ”close” are the observed values to those

which would be expected under the fitted model ?

Towards Answer:

• In this case we seek to determine whether the distribution of

results in a sample could plausibly have come from a

distribution specified by a null hypothesis.

• The test statistic is calculated by comparing the observed

count of data points within specified categories relative to the

expected number of results in those categories (under Null).



χ2- goodness of fit test

• Let T be a random variable with finite range {c1, c2, . . . , ck}
for which

P(T = cj) = pj > 0 for 1 ≤ j ≤ k.

• Let X1,X2, . . . ,Xn be the sample from the distribution T and

let

Yj = |{j : Xj = cj}| for 1 ≤ j ≤ k..

Yj is the number of sample points whose outcome was cj

• Then the statistic

X2 :=
k∑

j=1

(Yj − npj)
2

npj
≡

k∑
j=1

(Observed− Expected)2

Expected



χ2- goodness of fit test

X2 :=
k∑

j=1

(Yj − npj)
2

npj
≡

k∑
j=1

(Observed− Expected)2

Expected

• X2- has χ2
k−1 degrees of freedom, assymptotically as n→∞.

• Null Hypothesis: Distribution comes from Multinomial with

parameters p1, p2, . . . , pk

• Alternate Hypothesis: Distribution comes from Multinomial

with parameters with at least one parameter different from

p1, p2, . . . , pk



χ2- goodness of fit test

Example:

We divide the political parties in India into 3 large alliances: NDA,

UPA, and Third-Front. In the previous election the support had

been 38%, 32% and 30% support respectively. Super-Nation TV

channel takes a sample of 100 people and finds that there are 35

for NDA, 40 for UPA and 25 for Third-Front. It concludes that the

vote share has not changed. Is this hypothesis correct ?



χ2- goodness of fit test

• Null Hypothesis: Vote Share is (38, 32, 30)

• Level of Significance: 0.05

• Data: Sample Vote share is (35, 40, 25)



χ2- goodness of fit test

Example Contd.:

> x = c(35,40,25)

> prob = c(38,32,30)

> prob = prob/sum(prob)

> n = sum(x)

> z = (x-n*prob)/((sqrt(n*prob)))



χ2- goodness of fit test

Example Contd.:
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χ2- goodness of fit test

Example Contd.:

> Xsquared = sum(((x-n*prob)^2)/(n*prob))

> Xsquared

[1] 3.070175

> pchisq(Xsquared, df = 3 -1, lower.tail=FALSE)

[1] 0.2154368

Since p-value is not smaller than 0.05 we do not reject the null

hypothesis.



χ2- goodness of fit test

Example Contd.: We can use in built R function

> chisq.test(x,p=prob)

Chi-squared test for given probabilities

data: x

X-squared = 3.0702, df = 2, p-value = 0.2154



χ2- goodness of fit test

X2 :=
k∑

j=1

(Yj − npj)
2

npj
≡

k∑
j=1

(Observed− Expected)2

Expected

• Large values of X2 indicate that the observed counts don’t

match expected counts.

• Large values of X2 indicates evidence that Null is not correct.



χ2- goodness of fit test

• Test Statistic:

X2 :=
k∑

j=1

(Yj − npj)
2

npj
≡

k∑
j=1

(Observed− Expected)2

Expected

• Decide on level of significance: α

• Compute p-value:

P(χ2
k−1 ≥ X 2)

• Reject Null Hypotheis:

if p-value is less than α



Contigency Tables

• Bivariate Data is often presented as a two-way table.

• For example in Dengue Data from Manipal Hospital

> y = read.table("dengueb.csv", header=TRUE)

> head(y)

DIAGNO BICARB1

1 DSS 16.2

2 DSS 22.0

3 DSS 16.0

4 DSS 21.3

5 DSS 19.0

6 DSS 18.7

> tail(y)

DIAGNO BICARB1

45 D 22.0

46 D 16.6

47 D 18.3

48 D 23.0

49 D 24.0

50 D 21.0



Contigency Tables

• Bivariate Data is often presented as a two-way table.

• For example in Dengue Data from Manipal Hospital

Diagnosis

Cat.Marker D DSS

0 0 6

1 17 15

2 8 4

where we have grouped values of Marker to be 0, 1, 2

depending on the values being less than or equal to 16,

between 16 and 21, and greater than 21.



χ2- test of independence

Specific question:

• Does one variable affect the distribution of the other ?

Notation:

• Let nr be the number of rows in the table.

• Let nc be the number of columns in the table.

• Let n = nrnc be the total number of observations.

Model:

• Let T ≡ (pij) with 1 ≤ i ≤ nr , 1 ≤ j ≤ nc be a probability

distribution on {(i , j) : 1 ≤ i ≤ nr and 1 ≤ j ≤ nc}

• Let pRi =
∑nc

j=1 pij and pCj =
∑nr

i=1 pij



χ2- test of independence

• Null Hypothesis: Variables are independent i.e

pij = pRi p
C
j for all 1 ≤ i ≤ nr and 1 ≤ j ≤ nc

• Alternate Hypothesis: Variables are not independent



χ2- test of independence

• Let yij record the frequency in the (i , j) cell.

• Let

p̂Ri =

∑nc
j=1 yij∑nr

i=1

∑nc
j=1 yij

and p̂Cj =

∑nr
i=1 yij∑nr

i=1

∑nc
j=1 yij

Let

p̂ij = p̂Ri p̂
C
j

and

X2 :=
nr∑
i=1

nc∑
j=1

(yij − np̂ij)
2

np̂ij



χ2- test of independence

• Test Statistic:

X2 :=
nr∑
i=1

nc∑
j=1

(yij − np̂ij)
2

np̂ij

is χ2
q distributed assymptotically as n→∞ with

q = (nr − 1)(nc − 1) degrees of freedom.

• Decide on level of significance: α

• Compute p-value:

P(χ2
q ≥ X 2)

• Reject Null Hypotheis:

if p-value is less than α



χ2- test of independence

For example in Dengue Data from Manipal Hospital:

> T = table(Cat.Marker, Diagnosis)

> T

Diagnosis

Cat.Marker D DSS

0 0 6

1 17 15

2 8 4

Can we test if the Marker value is independent of the

characterisation of Dengue as normal or severe ?



χ2- test of independence

For example in Dengue Data from Manipal Hospital:

> chisq.test(T)

Pearson's Chi-squared test

data: T

X-squared = 7.4583, df = 2, p-value = 0.02401



Simple Linear Regression: Relationship in Bivariate Data

• Key: conditional mean of response variable given the predictor

cariable is a linear function.

• Model: For data points (xi , yi ) with 1 ≤ i ≤ n,

yi = β0 + β1xi + εi ,

where εi assumed to be mean 0 and variance σ2 Normal

random variables.

• Observe only (xi , yi ) for 1 ≤ i ≤ n.



Simple Linear Regression: Relationship in Bivariate Data

• Find β0, β1 such that
n∑

i=1

(yi − β0 − β1xi )2

is minimized.

• Can be solved: Calculus and Linear Algebra

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= correlation(x , y)

S2
x

S2
y

β̂0 = ȳ − β̂1x̄

Observations:

• Slope of line is function of Correlation in standarised scale.

• Line passes through (x̄ , ȳ)

• Roles of y and x are not interchangeable.



Data Set: annualtemp.csv

> y = read.csv("annual_temp.csv", header=TRUE)

> head(y)

Year Temp CO2 CH4 NO2 Irradiance Nino_SST Volcano

1 1861 -0.411 286.5 838.2 288.9 1361.097 26.74233 0.00281

2 1862 -0.518 286.6 839.6 288.9 1360.987 26.39426 0.00859

3 1863 -0.315 286.8 840.9 289.0 1360.837 26.16013 0.01318

4 1864 -0.491 287.0 842.3 289.1 1360.753 26.28774 0.00707

5 1865 -0.296 287.2 843.8 289.1 1360.691 26.32374 0.00302

6 1866 -0.295 287.4 845.5 289.2 1360.600 26.31218 0.00128

> tail(y)

Year Temp CO2 CH4 NO2 Irradiance Nino_SST Volcano

146 2006 0.425 381.9 1784.5 320.0 1361.005 27.25267 0.00342

147 2007 0.397 383.8 1790.4 320.8 1360.939 26.66768 0.00454

148 2008 0.329 385.6 1797.8 321.7 1360.849 26.43034 0.00374

149 2009 0.436 387.4 1802.7 322.4 1360.822 27.50094 0.00402

150 2010 0.470 389.8 1807.7 323.2 1360.841 26.80601 0.00449

151 2011 0.341 391.6 1813.1 324.2 1361.083 26.39182 0.00370



Simple Linear Regression: Effect of CO2 on Temperature

> plot(Temp ~ CO2, data=y, pch=19,cex=.5, col="maroon")

> abline(lm(Temp ~ CO2, data=y), col="green")
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Simple Linear Regression: Belgium Phone Calls

> require(MASS)

> plot(calls ~ year, data=phones, pch=19,cex=.5, col="maroon")

> abline(lm(calls ~ year, data=phones), col="green")
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Simple Linear Regression

• Our own absolute deviation line:

> ABSMINLINE = function(x)

+ { with (phones, sum(abs(calls- x[1] -x[2]*year)))

+ }

> OPTIMAL = optim(c(0,0), fn = ABSMINLINE)

• Plotted lm, rlm, absline

> abline(lm(calls ~ year, data=phones), col="green")

> abline(OPTIMAL$par, col="blue")

> abline(rlm(calls ~ year, data=phones), col="purple")



Simple Linear Regression
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are there better fits ?: Shown you these four graphs.

> par(mfrow=c(2,2))

> plot(lm(calls ~ year, data=phones), col="maroon")
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Simple Linear Regression

• Model:

yi = β0 + β1xi + εi ,

with εi being i.i.d Normal(0, σ2).

• Estimators:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= correlation(x , y)

S2
x

S2
y

β̂0 = ȳ − β̂1x̄



Simple Linear Regression: September 17th



Simple Linear Regression: September 17th

• We had shown that

E [β̂1] = β1

and

• if

RSS ≡ Residual Sum of Squares :=
n∑

i=1

(yi − β̂0 − β̂1xi )2

Then

E [RSS ] = (n − 2)σ2



Simple Linear Regression: September 17th

•
β̂1 ∼ Normal(β1,

σ2

S2
xx

)

•
RSS

σ2
∼ χ2

n−2

• RSS and β̂1 are independent and thus

β̂1 − β1√
RSS

(n−2)S2
xx

∼ tn−2.



Simple Linear Regression: Testing

T :=
β̂1 − β1√

RSS
(n−2)S2

xx

∼ tn−2.

• Decide on level of significance: α

• Null Hypothesis: β1 = b

• Alternate Hypothesis: β1 6= b



Simple Linear Regression: Testing

• Test Statistic:

T :=
β̂1 − β1√

RSS
(n−2)S2

xx

• Decide on level of significance: α

• Compute p-value:

P(| tn−2 − b |≥| T − b |)

• Reject Null Hypotheis:

if p-value is less than α



Simple Linear Regression: Confidence Interval

T :=
β̂1 − β1√

RSS
(n−2)S2

xx

∼ tn−2

The interval(
β̂1 − tn−2(0.25)

√
RSS

(n − 2)S2
xx

, β̂1 + tn−2(0.25)

√
RSS

(n − 2)S2
xx

)

–the 95% confidence interval for β1 with

P(tn−2 ≥ tn−2(0.25)) = 0.025.



Similar to Analysis of Variance One way

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(yi − ŷi )
2 +

n∑
i=1

(ŷi − ȳ)2

Total Sum of squares = RSS + Regression Sum of squares

In Short:

SStotal = RSS + SSReg



Similar to Analysis of Variance One way

SStotal = RSS + SSReg

• As

ŷi − ȳ = β̂1(xi − x̄)

β̂1 ∼ 0 is near zero then SSReg ∼ 0 and

β̂1 6=∼ 0 is near zero then SSReg is large.

• Therefore SSReg can be used to test for β̂1 = 0.



Simple Linear Regression

SStotal = RSS + SSReg

• SStotal there are n sample points and one derived value ȳ –

n − 1 degrees of freedom.

• RSS there are n sample points and two estimated values

β̂0, β̂1 – n − 2 degrees of freedom.

• SSReg has one degree of freedom.



Simple Linear Regression

• RSS and SSReg are independent.

•
SSReg

σ2
∼ χ2

1 and
(n − 2)RSS

σ2
∼ χ2

n−2

•
SSReg

RSS
n−2

∼ F (1, n − 2).



Simple Linear Regression: Testing

F :=
SSReg

RSS
n−2

• Decide on level of significance: α

• Null Hypothesis: β1 = 0

• Alternate Hypothesis: β1 6= 0



Simple Linear Regression: Testing

F :=
SSReg

RSS
n−2

• Decide on level of significance: α

• Compute p-value:

P(F (1, n − 2) ≥ F )

• Reject Null Hypotheis:

if p-value is less than α


