Statistics 1

Due Date: October 10th, 2019

Part of this includes R work, so the assignment may be given in two parts : pdf file and paper copy in class.

- 1. Use babiesI.data from CHDS study in the Datasets folder in Dropbox shared with you.
 - (a) Plot the density (estimate) for weights of babies for Maternal smokers and non-smokers.
 - (b) Using the t.test decide with a level of significance of 5% whether or not to reject the null hypothesis that the means of weights of babies are the same.
- 2. The following data is from Kalyani Ramachandran's Lecture.
 - (a) The data from human cells and four treatment. The responses for each treatments are given below.

Α	В	\mathbf{C}	D
606.5	506.5	133	418
713.5	503.5	228	459

Assume variances are not equal.

- i. Write a function in R called twosamplettest that will take two data sets x and y, perform the t-test for equality of means. The output of the function should be the p-value.
- ii. Using the above twosamplettest, perform (three) equality of means test whether: mean of B is the same as mean of A; mean of C is the same as mean of A; and mean of D is the same as mean of A.
- (b) The data is from mice model. The responses for each treatments are given below.

Pre-Control	Pre-A	Post-Control	Post-A
0.37315	0.86272	0.13301	0.523392
0.39038	1.1056	0.67946	0.551693
0.40688	1.03096	0.96005	0.231634
0.09202	1.31211	0.30404	0.630685
0.51352	1.04229	0.63041	0.52417

Assume variances are not equal.

- i. Enter the above data as a data frame¹ using the data.frame command.
- ii. plot the data using dotplot in the library lattice.
- iii. Using the above twosamplettest, perform (three) equality of means test whether: mean of Pre-Control is the same as mean of Pre-A; mean of Post-Control is the same as mean of Pre-A; and mean of Post-A is the same as mean of Pre-A.
- iv. Using the inbuilt R function oneway.test, perform a test to see the equality of means across Pre-Control, Post-Control and Post-A.
- 3. Suppose X_1, \ldots, X_n is an i.i.d. sample with Uniform(a, b) distribution for some unknown a and b. Let m_1 and m_2 be the empirical realisation of the first and second moments of the X_1, \ldots, X_n data. Find an expression for the estimates of a and b given by the method of moments in terms of the quantities m_1 and m_2 . Furthe, prove that the method of moments produces estimates such that a = b if an only if every data point in the empirical realisation has exactly the same value.
- 4. Suppose X_1, \ldots, X_4 is an i.i.d. sample with Binomial(n, p) distribution for some unknown N and p. Suppose the empirical realisation of these variables is 1, 2, 5, 12. Show that the method of moments for estimating N and p gives negative (and therefore meaningless) results.
- 5. Let $\mu \in \mathbb{R}$ and $\sigma > 0$ and (X_1, X_2, \dots, X_n) be from a population distributed as Normal with mean p and variance σ^2 . Then find the M.L.E. for μ, σ .

¹Data frames are rectangular sets of data with each column being a variable and each row representing a case. To construct one from the variables themselves we can use data.frame(variable1= VECTOR1, variable2= VECTOR2).