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Example: Monty Hall Problem (Khullja Sim Sim)

You are on a game show, being asked to choose between three doors. One door
has a car, and the other two have goats. The host, Monty Hall, opens one of the
other doors, which he knows has a goat behind it. Monty then asks whether you
would like to switch your choice of door to the other remaining door. Do you
choose to switch or not to switch?

https://brilliant.org/wiki/monty-hall-problem/
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Example: Monty Hall Problem (Khullja Sim Sim)

You should always switch!

Pr(Winning if you don’t switch) =
1

3

Pr(Winning if you switch) =
2

3

If this phenomenon is hard to believe, you’re not alone. Vos Savant (1997) writes

“even Nobel physicists systematically give the wrong answer, and that
they insist on it, and they are ready to berate in print those who
propose the right answer”
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Example: Monty Hall simulation

doors <- 1:3

prize <- sample(1:3, 1) #choose a door at random

repeats <- 1e4

win.no.switch <- numeric(length = repeats)

win.switch <- numeric(length = repeats)

for(r in 1:repeats) # Repeat process many times

{

chosen.door <- sample(1:3, 1) # choose a door

reveal <- (1:3)[-c(prize,chosen.door)][1] #reveal a door

win.no.switch[r] <- chosen.door == prize #don’t change door

chosen.door <- (1:3)[-c(reveal, chosen.door)] #change door

win.switch[r] <- chosen.door == prize

}

mean(win.no.switch) #Prob of winning if you don’t switch

[1] 0.3316

mean(win.switch) # Prob of winning if you switch

[1] 0.6684
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Monte Carlo Simulation

Monte Carlo methods, or Monte Carlo experiments, are a broad class of
computational algorithms that rely on repeated random sampling to obtain
numerical results.

In the Monte Hall problem, we repeated the experiment 10,000 times and
observed whether we won or not. This is Monte Carlo simulation.

Then we use the simulated draws to estimate the probability of winning in each
case, this is Monte Carlo integration.
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Example: Birthday Candles

It’s my 30th birthday, and my friends bought me a cake with 30 candles on it. I
make a wish and try to blow them out. Every time, I blow out a random number
of candles between one and the number that remain, including one and that
other number. How many times, on average, do I blow before all the candles are
extinguished?

Monte Carlo simulation: Repeat experiment multiple times and note down the
number of attempts. That is, let F be the distribution of the number of blows
required. Generate

X1,X2, . . . ,XN
iid∼ F

Monte Carlo integration: Estimate EF [X ] by the average of simulated values

1

N

N∑
t=1

Xt
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Example: Monte Carlo
n <- 30 # no. of candles

repeats <- 1e4

iter <- numeric(length = repeats)

for(r in 1:repeats)

{

candles <- n

remain <- n

while(remain != 0) # as long as candles are left

{

iter[r] <- iter[r] + 1

blow.out <- sample(1:remain, 1) #randomly draw number of candles

that will blow out

remain <- remain - blow.out

}

}

head(iter) # First 6 draws of Monte Carlo simulation

[1] 6 3 3 6 9 5

mean(iter) # Monte Carlo integration

[1] 3.9912
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Monte Carlo in Applications

Engineering, biology, climate science, neuroscience, ecology, finance, etc.

Essentially, there are two main places where Monte Carlo is used

I If a complicated model determines the quantity, like climate models, bridge
breaking points, stock markets etc.

I If it is not possible to analytically determine the quantity of interest.

In statistics, this is where it is often used.
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Monte Carlo in Statistics

Let’s say we are faced with a difficult integral

µ =

∫ π

0

esin(x)dx .

A closed-form solution is tough. Instead of evaluating the integral, we will
estimate the integral. See that

µ =

∫ π

0

esin(x)dx = π

∫ π

0

esin(x)
1

π
dx = π EF

[
esin(x)

]
where F is Unif[0, π]

N <- 1e4

draws <- runif(N, min = 0, max = pi) # Draw from Unif[0,pi]

MC.samples <- pi*exp(sin(draws)) # Monte Carlo simulation

(MC.est <- mean(MC.samples)) # Monte Carlo integration

[1] 6.216101
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Monte Carlo Integration: why it works?

Monte Carlo simulation: X1,X2, . . . ,XN
iid∼ F with mean µ and variance σ2.

Monte Carlo estimator: By the strong law of large numbers,

µ̂N :=
1

N

N∑
t=1

Xt
a.s.→ µ as N →∞ .

So the classical laws of statistics applies.

Similarly, the CLT holds

√
N (µ̂N − µ)

d→ N(0, σ2) .
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Monte Carlo error

We can estimate σ2 with the usual sample variance

s2 :=
1

N − 1

N∑
t=1

(Xt − µ̂N)2 ,

and
µ̂N − µ√
s2/N

≈ tN−1

So, a 95% (large-sample) confidence interval is

µ̂N ± t.975,N−1

√
s2

N
.

In repeated simulations, on average, 95% of such confidence intervals will
contain the truth.
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Confidence Interval MC simulation

# Confidence interval

repeats <- 1e4

N <- 1e4

truth <- 6.20876 # True value of the integral

conf.track <- numeric(length = repeats)

for(r in 1:repeats)

{

draws <- runif(N, min = 0, max = pi)

MC.samples <- pi*exp(sin(draws))

MC.est <- mean(MC.samples) # Repeating this process

var.est <- var(MC.samples) # Calculate variance and half-width

half.width <- qt(.975, df = N-1)*sqrt(var.est/N)

# If truth is between upper and lower bounds

conf.track[r] <- abs(truth - MC.est) < half.width

}

(mean(conf.track)) #about 95% contain the truth

[1] 0.9486
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Estimating more than one quantity

Suppose we are interested in estimating

µ1 =

∫ π

0

esin(x)dx dy and µ2 =

∫ π

0

ecos(x)

We can use the same samples to estimate both these quantities.

N <- 1e4

draws <- runif(N, min = 0, max = pi)

(MC.est1 <- mean(pi*exp(sin(draws))) ) #mu1

(MC.est2 <- mean(pi*exp(cos(draws))) ) #mu2

But, since we are estimating two things together, confidence intervals suffer.
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Joint confidence intervals

We have two CLTs, one for each estimator

√
N (µ̂1 − µ1)

d→ N(0, σ2
1) and

√
N (µ̂2 − µ2)

d→ N(0, σ2
2)

These give two corresponding confidence intervals

µ̂1 ± t.975,N−1

√
s21
N

and µ̂2 ± t.975,N−1

√
s22
N

In repeated simulations, 95% of the 1st confidence interval will contain µ1 and

95% of the 2nd confidence interval will contain µ2.

But, the chances that both intervals contain their respective truths in repeated
simulations is around 95% ∗ 95% ≈ 90%.
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Estimating more than one quantity
,

conf.track <- matrix(0, nrow = repeats, ncol = 3)

for(r in 1:repeats)

{

draws <- runif(N, min = 0, max = pi)

MC.est1 <- mean(pi*exp(sin(draws)) )

MC.est2 <- mean(pi*exp(cos(draws)))

var.est1 <- var(pi*exp(sin(draws)))

var.est2 <- var(pi*exp(cos(draws)))

half.width1 <- qt(.975, df = N-1)*sqrt(var.est1/N)

half.width2 <- qt(.975, df = N-1)*sqrt(var.est2/N)

conf.track[r,1] <- abs(truth1 - MC.est1) < half.width1

conf.track[r,2] <- abs(truth2 - MC.est2) < half.width2

conf.track[r,3] <- conf.track[r,1] && conf.track[r,2] # joint CI

}

colMeans(conf.track)

mu1 mu2 mu1_&_mu2

0.9500 0.9514 0.9052 #Joint estimation has lesser than 95% coverage

15 / 26



Correcting for multiple quantities

There are many ways of correcting for multiple quantities, but one of the most
common is to increase the individual coverage probabilities, .95 to .975, since
.975 ∗ .975 ≈ .95. In general for estimating p quantities, a formula for this is

α∗ = α/p

This is called the Bonferroni correction.

This is not specific to Monte Carlo, but for almost any joint confidence interval
construction.
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Correcting for multiple quantities
for(r in 1:repeats)

{

draws <- runif(N, min = 0, max = pi)

MC.est1 <- mean(pi*exp(sin(draws)))

MC.est2 <- mean(pi*exp(cos(draws)))

var.est1 <- var(pi*exp(sin(draws)))

var.est2 <- var(pi*exp(cos(draws)))

# new half-widths from adjusted t-quantile

new.half.width1 <- qt( 1- .05/4, df = N-1)*sqrt(var.est1/N)

new.half.width2 <- qt( 1- .05/4, df = N-1)*sqrt(var.est2/N)

conf.track[r,1] <- abs(truth1 - MC.est1) < new.half.width1

conf.track[r,2] <- abs(truth2 - MC.est2) < new.half.width2

conf.track[r,3] <- conf.track[r,1] && conf.track[r,2]

}

# Individual CIs have .975 coverage, but joint CI has good coverage

colMeans(conf.track)

mu1 mu2 mu1_&_mu2

0.9751 0.9743 0.9509
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Why confidence intervals?
The reason confidence intervals are useful is because unlike real life, we can
continue simulating draws on a computer. So when should we stop?
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We can stop when the width of the CI is small, so accuracy is high.
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Problem: Monte Carlo Sampling

One major problem is that Monte Carlo sampling is not always so easy. Consider
estimating

θ =

∫
x2+y2≤1

sin(x2 + y2)dx dy

= π

∫
x2+y2≤1

1

π
sin(x2 + y2)dx dy .

Define density f being the uniform density over a unit circle

f (x , y) =
1

π
I (x2 + y2 ≤ 1) .

Then,

µ = π

∫
sin(x2 + y2)f (x , y)dx dy = π EF

[
sin(X 2 + Y 2)

]
.

So we want to draw (X1,Y1), (X2,Y2), . . . , (XN ,YN) from the Uniform circle.
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Sampling from a circle
,

N <- 1e4
count <- 0
x <- numeric(length = N)
y <- numeric(length = N)
while(count < N)
{
# sample from box
from_box <- runif(2, min = -1,

max = 1)

# Accept if inside circle, accept
if(from_box[1]^2 + from_box[2]^2

<= 1)
{
x[count] <- from_box[1]
y[count] <- from_box[2]
count <- count + 1

}
}

,

# Monte Carlo Integration
mean(pi*sin(x^2 + y^2))
[1] 1.450068
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Sampling from a circle

How efficient is this method?

Pr (accepting draws) =
Area of circle

Area of square
=
π

4
≈ .785 .

Pretty efficient.

But, suppose you want to sample from a p-dimensional sphere.
Same principle, sample from a p-cuboid, and accept if inside the sphere

p∑
i=1

x2i ≤ 1 .

Pr (accepting draws) =
Area of sphere

Area of cuboid
=

πp/2

Γ(p/2 + 1)2p
.

For p = 5 it is .164 and say p = 15, probability of accepting is .0000116 !
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Markov chain Monte Carlo (MCMC)
The low efficiency in high dimensions is because information about past
acceptances is not retained.
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MCMC: sampling from a circle
What if we used the information about our “current” sample to propose the next
sample?
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How is MCMC different from traditional Monte Carlo?

The samples obtained are not iid. So classical statistics cannot be used.

I Does a law of large numbers hold?

I Does a CLT hold?

I If yes, what is the variance in the CLT?

I Can we still make confidence intervals?

These are all valid research questions. There are answers available. References:

I Handbook of Markov chain Monte Carlo (Brooks et al., 2011)

I Monte Carlo statistical methods (Robert and Casella, 2013)

I Simulation and the Monte Carlo method (Rubinstein and Kroese, 2016)
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Thank you.

Questions?
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