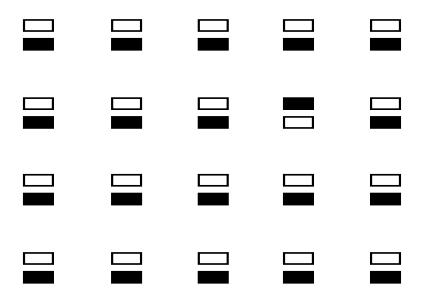
Perceptual Distance and Visual Search

Statistics 1, ISI Bangalore Centre

Rajesh Sundaresan Indian Institute of Science

17 September 2019

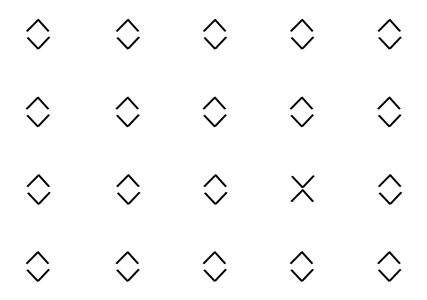
Find the odd image - 1



Find the odd image - 2

$\square \times$	$\exists \times$	$\exists \times$	$\blacksquare \times$	$\square \times$
∎×	\times		Ж	
Ш×	Ж	ШХ	Ж	Ш×
\blacksquare	$\blacksquare \times$			

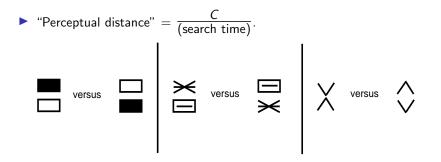
Find the odd image - 3



Similarity and search time

- > The more similar the two images, the longer the search time
- The more the "distance" between the two images, the shorter the search time.

Neuroscientists perform such experiments



 Helps them interpret how objects are represented in the brain, capture important features. A reaction time study on humans (Arun and Olson 2010)

Study conducted on six subjects

Identify the location of the oddball and hit a key to tell left or right

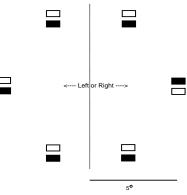
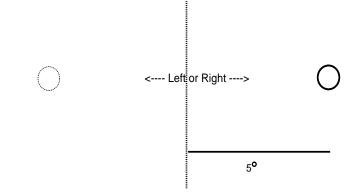


Image displayed until reaction (which if correct, valid trial), or until 5 seconds (aborted)

 RT_{ij} = average reaction time

Data averaged over both oddball i among distracters j

Baseline reaction time

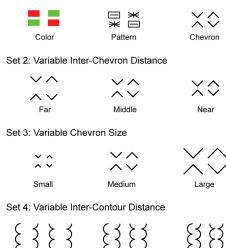


- $\blacktriangleright \mathsf{RT}_b = \mathsf{baseline} \text{ reaction time}$
- Search time $s_{ij} = RT_{ij} RT_b$
- Perceptual distance between *i* and *j* is taken to be $\frac{C}{s_{ii}}$

$$\blacktriangleright RT_b = 328 ms.$$

Image pairs on which search time data was collected (Sripati and Olson 2010)

Set 1: Variable Part Identity



Far

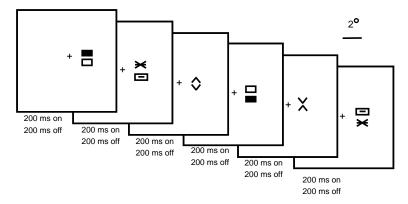
Near

A direct view into the brain of rhesus macaques

Try to nail the responses in the brain to the two images, and see how different they are.

A direct view into the brain of rhesus macaques

Sripati and Olson trained two macaques to fixate on the + and made a series of stimuli appeared one after another.



Images were randomly interleaved. Neuronal activity was recorded (in the inferotemporal cortex) over several 2 second rounds.

The neuronal data

Inferotemporal cortex - gross object features emerge here

- Firing rates of N = 174 neurons in response to these six images
- Data collected in a similar manner for a total of 24 images
- For each image i, the neuronal response is summarized by the firing rate vector (λⁱ(n), 1 ≤ n ≤ N).

Image
$$i \mapsto \lambda^{i} = \begin{pmatrix} \lambda^{i}(1) \\ \lambda^{i}(2) \\ \vdots \\ \lambda^{i}(N) \end{pmatrix}$$

The main question

- For the pair (i, j), perceptual distance ought to be a function of how "different" λ^i and λ^j are.
- What dist (λ^i, λ^j) function?

• How does it relate to reaction time? Is it $\frac{C}{\operatorname{dist}(\lambda^{i},\lambda^{j})}$?

First distances that come to our minds

Try Euclidean distance, or L^1 :

$$L_{ij}^{1} = \|\lambda^{i} - \lambda^{j}\|_{1} = \sum_{n} |\lambda^{i}(n) - \lambda^{j}(n)|$$

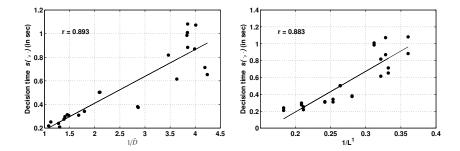
An alternative, via a model and a theory

- If you look at object j, your neurons fire at rate λ^j .
- ▶ Perhaps firings are random variables $X = (X_n, 1 \le n \le N)$
- A good model: $X_n \sim Poisson(\lambda^j(n)T)$ over T time units.
- Let s_{ij} be the search time for identifying oddball *i* in a sea of *j*.
- An optimal search theory predicts, for a probability of error ε ,

$${\sf E}[s_{ij}] \simeq rac{{\sf log}(1/arepsilon)}{ ilde{D}_{ij}}$$

$$ilde{\mathcal{D}}_{ij} = \sum_{n} \left[\lambda^{i}(n) \log rac{\lambda^{i}(n)}{\lambda^{j}(n)} - \lambda^{i}(n) + \lambda^{j}(n)
ight]$$

Compare *s* versus 1/dist: Which dist is better?



The ideal

If the theory holds:

$$E[s_{ij}] = rac{C}{dist_{ij}} \iff E[s_{ij}dist_{ij}] = C \quad \forall (i,j)$$

This suggests the following hypothesis:

Across the image pairs, the mean of the scaled search time (scaled by $dist_{ij}$) is a constant.

• Which dist $(\tilde{D} \text{ or } L^1)$ comes closer to this ideal?

Data and a hypothesis test to help with comparison

Six subjects, 12 showings of oddball i in a sea of j.

•
$$X_t^{(i,j)} = s_{ij,t} \tilde{D}_{ij}, \ l = 1, \dots, 72.$$

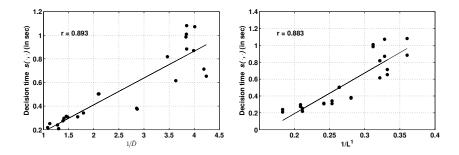
$g_1=(i_1,j_1)$	$g_2=(i_2,j_2)$	 $g_{24} = (i_{24}, j_{24})$
$X_1^{(g_1)}$	$X_1^{(g_2)}$	 $X_1^{(g_{24})}$
÷	÷	÷
$X_{72}^{(g_1)}$	$X_{72}^{(g_2)}$	 $X_{72}^{(g_{24})}$

► A hypothesis test:

Null hypothesis: All groups have the same mean

Alternative hypothesis: Not so

Understanding the data, which parametric family?

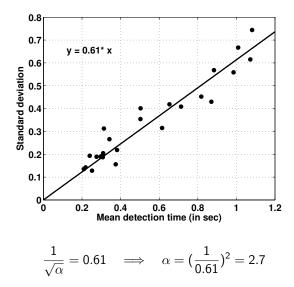


- Variance increases with mean
- Gamma distribution: $p_{S}(s) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}s^{\alpha-1}e^{-\beta s}, \quad s > 0$ Shape $\alpha > 0$, rate $\beta > 0$

•
$$E[S] = \frac{\alpha}{\beta}, \quad \sigma(S) = \frac{\sqrt{\alpha}}{\beta} = \frac{1}{\sqrt{\alpha}} E[S].$$

Do the groups have a common shape?

Is $\sigma(S^{(g)})$ linear in $E[S^{(g)}]$ across $g = 1, \ldots, 24$?



Equality of means test, look at scaled search times

►
$$X_1^{(g)}, \ldots, X_{72}^{(g)}$$
 iid Gamma $(\alpha, \beta_g), g = 1, \ldots, G.$

▶ g = 1,...G stands for the different pairs of images. G = 24 pairs of images in all.

- ▶ Null hypothesis: $\beta_1 = \beta_2 = \ldots = \beta_G$
- Alternative hypothesis: Not all equal.

Equality of means test, look at scaled search times

• The test when α is known: Reject null hypothesis if:

$$\alpha \log \frac{\text{AM across groups}}{\text{GM across groups}} > \tau$$

for a suitable threshold τ .

- Here, don't use it for accepting/rejecting null hypothesis. Instead use it for comparison.
- Compute AM/GM for dist = \tilde{D} and dist = L^1 .

diff	$\alpha \log({\rm AM/GM})$
Ď	0.0600
L^1	0.2061

• Conclusion: \tilde{D} provides a better 'clustering' than L^1 .

Summary

- We looked at a visual search problem.
- Neuroscientists are interested in this problem because they want to capture a notion of 'perceptual distance' between objects.

• Perceptual Distance =
$$\frac{c}{(\text{search time})}$$

- Another measure of distance how different are the responses to the images?
- What function of the firing rate vectors is an appropriate distance?
 - Search times are indeed C divided by some dist.
 - A (relative entropic) distance \tilde{D} explains observed search times better than L^1 .
 - Conclusion obtained by verifying that $s_{ij}\tilde{D}_{ij}$ is more clustered than $s_{ij}L_{ij}^1$.
- Data set link: https://ece.iisc.ac.in/~rajeshs/E0259/02_ data_visual_neuroscience.htm