e R has many in-built functions.
e Writing new functions is also possible.

e |t can be constructed using function

Functions in R: Syntax

e say we are trying to find the mean of vector

> ourmean = function(x) {
+ sum(x)/length(x)
+ }

e the function will return the last computed value unless the
body calls for a specific return value.

>x =c¢(1,2,3,4,4,5,5,5,5)

> ourmean (x)

[1] 3.777778

e Try to use in-built functions -R

e It does take effort to write a useful funciton using function
that provides one single number.

Sampling from a given distribution

e we can use the sample function.

e takes a sample of the specified size (specified by size) from
the elements of x using either with or without replacement
(specified by replace).

e The optional prob argument can be used to give a vector of
weights for obtaining the elements of the vector being

sampled.

>x =c¢(1,2,3,4,5,6)
> probx= c(1/6,1/6,1/6,1/6,1/6,1/6)
> Rolls=sample(x, size=1800, replace=T, prob=probx)

Uniform(1,2,3,4,5,6)

> table(Rolls)

Rolls
1 2 3 4 5 6
300 329 285 273 306 307

> hist(Rolls,breaks = seq(1,6, by=0.25))

Histogram of Rolls

Frequency
100 200 300

0

Rolls

Functions in R: Variance of Uniform

e Let us try to compute the variance of x
> x
[1] 123456

> ourvariance = function(x) {
+ sum((x -ourmean(x))~2)/length(x)
+ }

e Note that this differs from sample variance in the

normalisation.

Uniform(1,2,3,4,5,6)

> var(Rolls)
[1] 2.980381
> ourvariance (x)
[1] 2.916667

e ourvariance gives the variance of the uniform random
variable.

Sums of Rolls

Suppose we wish to simulate in R the experiment that we did in
class of Rolling a die and noting down its sum. We can use the

sample , matrix and apply.

x = ¢(1,2,3,4,5,6)

probx= c(1/6,1/6,1/6,1/6,1/6,1/6)

Rolls=sample(x, size=1500, replace=T, prob=probx)
Rollm=matrix(Rolls, 5)

above creates a matrix 5 columns and 30 Rows

V V V V VvV V

Rollsums = apply(Rollm, 2, sum)

Sums of Rolls

> table(Rollsums)

Rollsums
7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
2 2 2 71514 21 24 16 24 25 32 28 21 18 16 9 10 5 6 2 1

> hist(Rollsums,breaks = seq(5,30, by=1))

Histogram of Rollsums

Frequency
15 25

5

I T T T T 1
5 10 15 20 25 30

Rollsums

Class experiment: Sums of Rolls

This was the histogram that we got when we did the experiment of

rolling a die 5times and noting down its sum.

Sampling distribution

Suppose we want to verify the below result via simulations:

Let X1, Xa,..., X, be an i.i.d. sample of random variables whose
distribution has finite expected value p and finite variance 2. Let

X represent the sample mean. Then

a

E[X]=p and SD[X]=

3

Sampling distribution

>x=1c¢(1,2,3,4,5,6)
> probx= c(1/6,1/6,1/6,1/6,1/6,1/6)

Let us generate 3 sets of data:
500,5000,150000 samples from x and probx.

> Rolls=sample(x,size=500,replace=T,prob=probx)
> Rol1ls5000=sample(x,size=5000,replace=T,prob=probx)
> Rolls150000=sample (x,size=150000,replace=T, prob=probx)

Sampling distribution

We split them up into sets of 5,50,5000 rolls.

> Rollm=matrix(Rolls, 5)

> Rollm5000=matrix(Rol1ls5000, 50)

> Rollm150000=matrix(Rol1ls150000, 5000)

Thus each gives us sets of 100,100,30 trials respectively fo
5,50, 5000

Sampling distribution

Let us compute the the mean of each row which are of size
5,50, 5000

> Rollmeans = apply(Rollm, 2, mean)
> Rollmeans5000 = apply(Rollm5000, 2, mean)
> Rollmeans150000 = apply(Rollm150000, 2, mean)

an of Rolls

> table(Rollmeans)

Rollmeans
22.22.42.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.8 5
3 3 9 10 7 5 10 11 11 8 8 5 3 5 2

> table(Rollmeans5000)

Rollmeans5000
2.88 3 3.02 3.04 3.06 3.08 3.1 3.12 3.14 3.16 3.18 3.2 3.22 3.24 3.26 3.28
1 1 1 1 1 1 1 1 1 1 1 2 3 2 1 2
3.32 3.34 3.36 3.38 3.4 3.42 3.44 3.46 3.48 3.5 3.52 3.54 3.56 3.58 3.6 3.62
3 1 6 3 3 2 3 5 2 2 2 4 3 2 2 5
3.64 3.66 3.68 3.7 3.72 3.74 3.76 3.78 3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.96
1 6 4 4 2 1 2 1 1 2 1 1 1 1 1 1
4.02
1

> table(Rollmeans150000)

Rollmeans150000

3.4326 3.4334 3.4644 3.474 3.477 3.4774 3.4826 3.4828 3.4844 3.4868 3.4902
1 1 1 1 1 1 1 1 1 1 1

3.4912 3.4938 3.5006 3.5016 3.5028 3.503 3.505 3.507 3.508 3.5084 3.5102
1 1 1 1 1 1 1 1 1 1 2

3.511 3.5172 3.5268 3.5316 3.5334 3.5482 3.551
1 1 1 1 1 1 1

Centered around 3.5

>
>
>
>

Frequency

par (mfrow=c(1,3))
hist(Rollmeans)
hist(Rollmeans5000)
hist(Rollmeans150000)

Histogram of Rollmeans Histogram of Rollmeans5000
0 _ r
& &Q |
o o
& &
3
il 5 9
3
=
L
o w o 4
= =
v - v -
o o

LN N A e | L N S e e |
20 30 40 50 28 32 36 40

Rollmeans Rollmeans5000

Histogram of Rollmeans15000(

Frequency

o~
-

o
-

alllils

3

rrrrrrr1

.42 3.46 3.50 3.54

Rollmeans150000

Variance Reduction

Observe that there is real variance reduction in the sample means.

> ourvariance(x) # Variance of Uniform (1,2,3,4,5,6)

[1] 2.916667

> var(Rollmeans) # S°2, 100 Trials, mean of 5 Rolls

[1] 0.5527919

> var (Rollmeans5000)# S°2,100 Trials, mean of 50 Rolls

[1] 0.056544

> var (Rollmeans150000)# S°2, 100 Trials, mean of 5000 Rolls

[1] 0.0007484258

Central Limit Theorem

Suppose we want to verify the below result via simulations:

Let Xi, Xp,... bei.i.d. random variables with finite mean p, finite

variance o2. Then

ValXo = 1) o Z, (1)

o
where Z ~ Normal (0, 1).

Central Limit Theorem

Suppose we want to verify the below result via simulations:

Let Xi, Xp,... be i.i.d. random variables with finite mean p, finite
variance 2. Then

where X = w and Z ~ Normal (0,1).

Central Limit Theorem

We could rephrase the result as:

Let Xi, Xo,... bei.i.d. random variables with finite mean p, finite

variance o2. Then S
(n n///) i) Z, (3)
Vno

where S, = X1 + X2 + ...+ X, and Z ~ Normal (0, 1).

Central Limit Theorem

Suppose each X; was distributed as Bernoulli (p) random variable.
Then S, is a Binomail(n,p) random variable. Let us check for what

p does
S,—np

np(1—p)
is close to a Normal distribution.

Central Limit Theorem

We may simulate Binomial samples either direclty by rbinom

command or usi ng the replicate and rbinom command.

binomialsiml = rbinom(100,10,0.1)
generates 100 Binomial (10,0.1) samples

binomialsim2 = replicate(100, rbinom(1,10,0.25))

binomialsim3 = replicate(100, rbinom(1,10,0.5))

>

>

>

>

> # generates 100 Binomial (10,0.25) samples
>

>

> # generates 100 Binomial (10,0.5) samples
>

Histogram of all three simulations

Binomial(10, 0.1) Binomial(10, 0.25) Binomial(10, 0.5)
<3 8 7 M
¥ 7 8 7
w
< w
«
9
&
& 1 9 4
> > >
3 9 9
g T o g
3z 8 2 9 s v
o o L
I [[
e 3
o |
=
0 - w -
o ,,”n o ” o
T 1 T 11 T 1 T 11 LI I B D |
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
binomialsim1 binomialsim2 binomialsim3

From the above it seems that at n = 10 the symmetry is achieved
when p = 0.5 and not at p =0.1 and p =0.25

Standardised Histograms: Binomial n=10 and p=0.1, 0.25, 0.5

Std-Binomial(10, 0.1) Std-Binomial(10, 0.25) Std-Binomial(10, 0.5)
€ & —
<
— <
o
o | N —
&
[
5 3 5
g § 7 g N
s 9 s s
g - g 8
fi i [
o
=
o |
B ©
w0
o I_I =] o o
L I B | | I —r T 1 1
-5 -3 -10 -9 -7 -5 -15 -13 -11
binomialsim1 binomialsim2 binomialsim3

Perhaps n = 10 is not large enough to see the Central Limit

Theorem occuring.

Standardised Histograms: Binomial n=20 and p=0.1, 0.25, 0.5

Std-Binomial(20, 0.1) Std-Binomial(20, 0.25) Std-Binomial(20, 0.5)
€ 1 87
M f= -
— <
o | —
N w
]
w |
> > > -
g | g g
g 4 & &
s 5 o s
o o - o
& & - L S
9
w o
w
(=}] (=} =}
LI B | LI B | L S
-4 -2 0 1 -6 -4 -2 -9 -7 -5
binomialsim1 binomialsim2 binomialsim3

n = 20 is better.

Standardised Histograms: Binomial n=50 and p=0.1, 0.25, 0.5

Std-Binomial(50, 0.1) Std-Binomial(50, 0.25) Std-Binomial(50, 0.5)
W
o _ <
o _ <
< -
o
<
w |
o | =
> ° > >
e e £ w |
o 9] o
El S El
= z =
1] o o | o
r g - I o £
o
=
o | 0
- w0
o o)
rrrrorrr11 | I L I N B |
-3 -1 1234 -2 0o 1 2 -2 01 2 3
binomialsim1 binomialsim2 binomialsim3

n = 50 we get closer to Normal distribution

Role of n versus p

Binomial Random variable is close to Normal when the distribution
is symmetric. That is when p is close to 0.5. Otherwise the general
rule that we can apply is that when

np >5and n(l —p) > 5.

then Binomial(n,p) is close to Normal distribution.

Confidence Intervals

Using the Central Limit Theorem for large n we have
X —
P(|XQK7;——52|§ 1.96) ~ 0.95

which is the same as saying

1.960 - 1.960
P - X
(e (NG + X, NG

-+X>)z095

The interval (— 1.960 4 X 1960 4 X) is called the 95% confidence

/n
interval for p.

Confidence Intervals

95% confidence interval for y is <f 1'3%" + X, 1960 4 5()

Meaning: for n large if we did m (large) repeated trials and
computed the above interval for each trial then true mean would
belong to approximately 95% of m intervals calculated.

Confidence Intervals

The below is code for finding the confidence interval for a data x.
> cifn = function(x, alpha=0.95){

+ z = gnorm((l-alpha)/2, lower.tail=FALSE)

+ sdx = sqrt(1/length(x))

+ c(mean(x) - z*sdx, mean(x) + z*sdx)

+

}

Three Confidence Intervals for Normal(0,1)

> x1 = rnorm(100,0,1);y = cifn(x1)

[1] -0.29570433 0.09628847

> x2 = rnorm(100,0,1);z = cifn(x2)
>z

[1] -0.2396115 0.1523813

> x3 = rnorm(100,0,1);w = cifn(x3)

>w
[1] -0.2829300 0.1090628

Does 0 belong to all the three confidence intervals ?

Confidence Intervals Plots

The below is a plot of the three confidence intervals computed in
the previous slide.

0.10
1
0.10 0.15
1 1
0.10
1

0.00
1
0.00
1

0.00
1

-0.15
1
-0.15

-0.15

-0.25
-0.25

-0.25

Confidence Intervals : 10 Trials

We generate 10 trials of 100 samples from Normal(0,1) and
compute the confidence intervals using the function defined earlier.
> normaldata = replicate(10, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidatall,]*cidatal[2,]1<0
> table (TRUEIN)

TRUEIN
TRUE
10

Confidence Intervals : 10 Trials

0.2-

-0.2- —1

' ' ' '
25 5.0 75 10.0

Confidence Intervals: 40 Trials

We generate 10 trials of 100 samples from Normal(0,1) and
compute the confidence intervals using the function defined earlier.
> normaldata = replicate(40, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidatall,]*cidatal[2,]1<0
> table (TRUEIN)

TRUEIN
TRUE
40

Confidence Intervals : 100 Trials

We generate 100 trials of 100 samples from Normal(0,1) and

compute the confidence intervals using the function defined earlier.
> normaldata = replicate(100, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidatall,]*cidatal[2,]1<0

> table (TRUEIN)

TRUEIN
FALSE TRUE
1 99

mumm“uh+w+mu+M\mmwm\wmuu+ﬂu+*llu+Mm++uh”\'"mw”uuu

Confidence Intervals : 1000 Trials

We generate 1000 trials of 100 samples from Normal(0,1) and
compute the confidence intervals using the function defined earlier.
> normaldata = replicate(1000, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidatall,]*cidatal[2,]1<0
> table (TRUEIN)

TRUEIN
FALSE TRUE
51 949

Confidence Intervals : 1000 Trials

0.50-
0.25-
> 0.00-

-0.25-

-0.50-

' ' ' ' '
0 250 500 750 1000

Confidence Intervals

95% confidence interval for u is <— 1'365“ + X, 1962 4)_()

Meaning: for n large if we did m (large) repeated trials and
computed the above interval for each trial then true mean would
belong to approximately 95% of m intervals calculated.

Thus numerically the above meaning seems to hold for a Normal

population.

