1. Let Y_1, Y_2, \dots, Y_n be independent random variables, each uniformly distributed over the interval $(0, \theta)$.

- (a) Show that the mean \bar{Y} converges in probability towards a constant as $n \to \infty$ and find the constant.
- (b) Show that $\max\{Y_1, \dots, Y_n\}$ converges in probability toward θ as $n \to \infty$.

Solution: (a) Each Y_i has mean $\frac{\theta}{2}$ and variance $\frac{1}{12}\theta^2 < \infty$. Hence, by the Weak Law of Large Numbers, \bar{Y} converges in probability to $\frac{\theta}{2}$.

(b) Call $M_n = \max\{Y_1, \dots, Y_n\}$. Then, for any $\epsilon > 0$,

$$P(|M_n - \theta| \ge \epsilon) = P(M_n \le \theta - \epsilon) = P(Y_1 \le \theta - \epsilon, \dots, Y_n \le \theta - \epsilon) = \left(\frac{\theta - \epsilon}{\theta}\right)^n$$

so that

$$\lim_{n \to \infty} P(|M_n - \theta| \ge \epsilon) = \lim_{n \to \infty} \left(1 - \frac{\epsilon}{\theta}\right)^n = 0$$

or, equivalently,

$$\lim_{n \to \infty} P(|M_n - \theta| \le \epsilon) = 1$$

This is the definition of "max{ Y_1, \dots, Y_n } converges in probability toward θ as $n \to \infty$ ".