1. Let K be a compact subset of \mathbb{R}^n . Prove given $\epsilon > 0$ that there is a C^{∞} function $\rho_K(\cdot)$ on \mathbb{R}^n such that

 $\rho_K(\mathbb{R}^n) \subset [0,1], \qquad \mathrm{supp}(\rho_K) \subset \{y \in \mathbb{R}^n : \mathrm{Dist}(y,K) < \epsilon\}, \qquad \mathrm{and} \qquad \rho_K \equiv 1 \ \mathrm{on} \ K.$