- 1. If X_n and X all take integer values, then show that $X_n \Rightarrow X$ iff for each integer i, $P(X_n = i) \rightarrow P(X = i).$
- 2. Let F be a probability distribution function on R. Define for $0 < \omega < 1$,

$$X(\omega) = \inf\{a : F(a) > \omega\}.$$

- (a) Show this is a finite real number and X is a rv on (0, 1).
- (b) Show: $(0, F(c)) \subset \{\omega : X(\omega) \le c\} \subset (0, F(c))$
- (c) Show that X, defined on $((0,1), \mathcal{B}, \lambda)$ has distribution function F^1 .
- 3. Let The 'inverse' of the distribution function F be as defined above, denote Z, is called quantile function. Denote quantile functions of F_n and F by Z_n and Z respectively. If $F_n \Rightarrow F$, then show that $Z_n \to Z$ a.e. λ .
- 4. Suppose that $\mu_n \Rightarrow \mu$ on R and \mathbf{H} is a *uniformly bounded* and *equicontinuous* family of real valued functions on R. Show that $\int f d\mu_n \to \int f d\mu$ uniformly in $f \in \mathbf{H}$.

¹In other words, given any probability μ on R, there is a random variable on $((0,1), \mathcal{B}, \lambda)$ which has this distribution.