1. Let P and Q be two probabilities on (R, \mathcal{B}) with \mathcal{B} being the Borel- σ algebra. Let $fin\mathcal{G}$ and

$$\int f dP = \int f dQ$$

- (a) Suppose \mathcal{G} was the set of all bounded real continuous function f on R. Show that P is same as Q which means that for every Borel set B, P(B) = Q(B).
- (b) Is the above true if \mathcal{G} is the set of all bounded real uniformly continuous functions ?
- (c) Is the above true if \mathcal{G} is the set of all bounded C^{∞} functions?
- (d) Is the above true if \mathcal{G} is the set of all C^{∞} functions with compact support?

What if P, Q were finite measures?

- 2. Let $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ for $s \in \mathbb{C}$ with $\Re(s) > 1$. Show that this is a differentiable function.
- 3. For $f \in L^1_R(\lambda)$ its Fourier transform is the function on R to C defined by

$$\widehat{f}(t) = \int e^{itx} f(x) d\lambda$$

for $t \in R$. Show \widehat{f} is continuous. If $f, g \in L^1$ then show that $\widehat{f * g} = \widehat{f} \widehat{g}$.

4. For a finite measure μ on R, its Fourier transform is the function on R to C defined by

$$\widehat{\mu}(t) = \int e^{itx} d\mu$$

for $t \in R$.

- (a) Show $\hat{\mu}$ is continuous.
- (b) For finite measures μ and ν on R, show that
 - $x \mapsto \mu(B-x)$

is measurable.

- (c) Define $\mu * \nu(B) = \int \mu(B-x)d\nu(x)$ Show that this defines a measure on R. Show that $\widehat{\mu * \nu} = \widehat{\mu} \widehat{\nu}$
- 5. Let \mathcal{B} be the Borel σ -algebra on \mathbb{R} . Let \mathcal{G} be the collection of all symmetric Borel sets, that is,

$$\mathcal{G} = \{ B \in \mathcal{B} | x \in B \Leftrightarrow -x \in B. \}.$$

- (a) Show that \mathcal{G} is a σ -field.
- (b) Show that $E(f|\mathcal{G})(x) = \frac{f(x)+f(-x)}{2}$.

6. Let \mathcal{B} be the Borel σ -algebra on \mathbb{R}^n . Let Π be the permutation group on n points. Π acts on \mathbb{R}^n in the obvious way:

$$\pi(x_1,\ldots,x_n) = (x_{\pi(1)},\ldots,x_{\pi(n)}).$$

A Borel set $B \in \mathcal{B}$ is Π -invariant if it is invariant under action of all $\pi \in \Pi$. A probability P on \mathbb{R}^n is Π -invariant if for every Borel set $P(B) = P(\pi^{-1}(B))$ for all $B \in \mathcal{B}$ and $\pi \in \Pi$.

- (a) Show that the collection \mathcal{G} of Π -invariant Borel sets is a sigma-field.
- (b) If P is Π -invariant, then show that $E(f \mid \mathcal{G})(x) = \frac{1}{n!} \sum f(\pi(x))$.
- 7. Consider probability space (R^2, \mathcal{B}, P) where $dP = \varphi(x, y)d\lambda$. Define

$$\varphi_1(x) = \int \varphi(x, y) dy.$$

For each $x \in \mathbb{R}$, let

$$\psi(y | x) = \begin{cases} \frac{\varphi(x,y)}{\varphi_1(x)} & \text{if } 0 < \varphi_1(x) < \infty; \\ I_{[0,1]}(y) & \text{otherwise.} \end{cases}$$

- (a) Show: for each x, as a function of y, $\psi(y | x)$ is a probability density function.
- (b) For any bounded function f(x, y) define $f^*(x, y) = \int f(x, y)\psi(y | x)dy$.
- (c) If \mathcal{G} is the σ -field generated by the map $\pi_1(x, y) = x$, show that $E(f \mid \mathcal{G}) = f^*$.