- 1. Consider a measure space $(\Omega, \mathcal{A}, \mu)$. Show that simple function based on sets of finite measure are dense in L^p for $1 \leq p < \infty$.
- 2. Consider $[0,1] \times [0,1]$ with Borel σ -field \mathcal{B} .
 - (a) Show that there is a measure on $[0,1] \times [0,1]$ which is not a product measure.
 - (b) Let $Q: [0,1] \times \mathcal{B} \to [0,1]$ be such that:
 - i. if you fix x, as a function of A, Q is a probability on the Borel sets of [0, 1];
 - ii. if you fix Borel set $A \subset [0,1]$ then as a function of x, Q is Borel measurable on $[0,1]^1$

Show that for every Borel $B \in \mathcal{B}$, the map $x \mapsto Q(x, B^x)$ is a measurable function on [0, 1].

(c) Let now P be a probability on [0, 1]. Define for $B \in \mathcal{B}$,

$$\mu(B) = \int Q(x, B^x) dP(x).$$

Show μ is a probability on \mathcal{B} .

(d) Let f be a measurable function on $([0,1] \times [0,1], \mathcal{B})$. Show that

$$x\mapsto \int f(x,y)Q(x,dy)$$

is measurable function of x on [0, 1].

- (e) Show that $\int f d\mu = \int \left[\int f(x, y) Q(x, dy) \right] dP(x)$
- (f) *Extra Credit:* Every probability μ on \mathcal{B} arises this way from some Q and P. that is, any concept of 'area' can be obtained by fixing notion of 'length' on x-axis and fixing notions of 'lengths' on each vertical line.
- 3. Linearity of R-N derivative: All measures below are sigma-finite measures on (Ω, \mathcal{A}) .
 - (a) If $\nu_1 \ll \mu$ and $\nu_2 \ll \mu$ then $\nu_1 + \nu_2 \ll \mu$ and $\frac{d(\nu_1 + \nu_2)}{d\mu} = \frac{d\nu_1}{d\mu} + \frac{d\nu_2}{d\mu}$. Also for c > 0, $\frac{d(c\nu_1)}{d\mu} = c \frac{d\nu_1}{d\mu}$
 - (b) If $\nu \ll \mu$ and $\mu \ll \theta$ then show $\nu \ll \theta$ and $\frac{d\nu}{d\theta} = \frac{d\nu}{d\nu} \frac{d\mu}{d\theta}$
 - (c) If $\nu \ll \mu$ and $\mu \ll \nu$ then show that $\frac{d\mu}{d\nu} = 1/\frac{d\nu}{d\mu}$
 - (d) If $\nu_1 \ll \mu_1$ on $(\Omega_1, \mathcal{A}_1)$ and $\nu_2 \ll \mu_2$ on $(\Omega_2, \mathcal{A}_2)$ then show that $\nu_1 \otimes \nu_2 \ll \mu_1 \otimes \mu_2$ on $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$. Find the R-N derivative in terms of the R-N derivatives on the axes.
- 4. Suppose \mathcal{A} is a finite σ -field and $\nu \ll \mu$ (finite measures). Give a formula for $d\nu/d\mu$. What if \mathcal{A} is a countable σ -field ?

¹Such objects as Q are called probability kernels or transition functions.

- 5. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space. Let \mathcal{C} be a family of sets in \mathcal{A} .
 - (a) Show that there is a set $S \in \mathcal{A}$ such that:
 - i. if $C \in \mathcal{C}$ then $C \subset S$ a.e., meaning $\mu(C \setminus S) = 0$ and
 - ii. if S^* has the property as in (i), then $S \subset S^*$ a.e.
 - iii. such a set is unique, in the sense, if S and S' satisfy the two conditions then S = S' a.e.
 - iv. there is a sequence of sets $\{C_n\}$ in \mathcal{C} such that $S = \bigcup C_n^2$
 - (b) Let Θ be a collection of finite measures such that $\nu \ll \mu$ for every $\nu \in \Theta$. Show that there is a sequence $\{\lambda_n\}$ in Θ and positive numbers $\{c_n\}$ such that $\lambda = \sum c_n \lambda_n$ is a finite measure and $\nu \ll \lambda$ for all $\nu \in \Theta^3$
- 6. Consider σ -finite measure space $(\Omega, \mathcal{B}, \mu)$. Let L^{∞} be the collection of all measurable functions f such that for some number M (depending on the function), $\mu(|f| > M) = 0$.
 - (a) Show L^{∞} is a linear space.
 - (b) For $f \in L^{\infty}$, define

$$\|f\|_{\infty} = \inf\{M > 0: \mu(|f| > M) = 0\} = \sup\{C > 0: \mu(|f| > C) > 0\}$$

Show :

- i. $||f + g|| \le ||f|| + ||g||$
- ii. ||cf|| = |c|||f|| and
- iii. ||f|| = 0 iff f = 0 a.e. $[\mu]$.
- (c) Show the space $(L^{\infty}, || ||)$ is complete.
- (d) Show that the dual space⁴ of L^1 is L^{∞}
- 7. Regard log as a function on $[0, \infty]$ with $\log 0 = -\infty$, $\log \infty = \infty$. Let μ, ν, P be probabilities on (Ω, \mathcal{A}) with $d\mu = fdP$; $d\nu = gdP$.
 - (a) Show $\int \log(f/g) d\nu$ 'makes sense', can be $-\infty$, but not $+\infty$.
 - (b) Show $\int \log(f/g) d\mu$ 'makes sense', can be $+\infty$, but not $-\infty$.
 - (c) Show $\int \log(f/g) d\mu = \int \log(f/g) d\nu$ iff μ and ν are same.⁵
- 8. Let $p(t, x, y) = \frac{1}{\sqrt{2\pi t}} \exp\{-\frac{1}{2t}(x-y)^2\}, \quad (t, x, y) \in (0, \infty) \times R \times R.$
 - (a) Show that for every $y \in R$ as a function of (t, x) this function satisfies the following pde, called 'heat equation':

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial x^2}; \quad \text{for } (t, x) \in (0, \infty) \times R.$$

²Such a set C is called the esential-sup/esential-union of C.

³All the above remains true if μ is sigma-finite. This is known as Halmos-Savage theorem.

⁴Interestingly, dual of L^{∞} is NOT L^1 in general.

⁵These quantities arise in information theory and statistics.

(b) Let φ be a continuous function on R which is zero outside a bounded interval. Define

$$u(0,x) = \varphi(x)x \in R \text{ and}$$
$$u(t,x) = \int_{R} p(t,x,y)\varphi(y)dy, (t,x) \in (0,\infty) \times R$$

- (c) Show that u is a continuous function on $[0,\infty) \times R$ and satisfies the heat equation
- (d) Show that even if φ is only bounded measurable, show that u satisfies the Heat equation in $(0, \infty) \times R$.