- 1. Show that there are Borel sets of positive Lebesgue measure in R which do not contain any interval of positive length.
- 2. Consider the collection L of all real random variables on a probability space (Ω, \mathcal{F}, P) . Define

$$d(X,Y) = E\left\{\frac{|X-Y|}{1+|X-Y|}\right\}$$

- (a) For $X \in L$, define $[L] = \{[X] : Y \in L, P(X = Y) = 1\}$. Show that ([L], d) is a metric space.
- (b) Show $d(X_n, X) \to 0$ iff $P(|X_n X| > \epsilon) \to 0$ for every $\epsilon > 0$.
- 3. For a finite measure space (Ω, μ) show that $L^r(\mu) \subset L^p(\mu)$ if $1 \leq p < r$. Will this be true if μ is not a finite measure ?
- 4. Let X_1, \ldots, X_n be independent random variables on (Ω, \mathcal{F}, P) .
 - (a) If X_1, \ldots, X_n are all discrete rvs then show that they are independent iff $P(X_1 = a_1, X_2 = a_2, \ldots, X_n = a_n) = \prod P(X_i = a_i)$ for all numbers $a_i \in \mathbb{R}$.
 - (b) Suppose X_1, \ldots, X_n are absolutely continuous random variables with densities f_1, \ldots, f_n then show that for all Borel $B \subset \mathbb{R}^n$,

$$P\{\omega: (X_1(\omega),\ldots,X_n(\omega))\in B\} = \int_B g(x_1,\ldots,x_n)\prod_{i=1}^n dx_i,$$

where $g: \mathbb{R}^n \to \mathbb{R}$ given by $g(x_1, \ldots, x_n) = \prod f_i(x_i)$.

Conversely, suppose that (X_1, \ldots, X_n) have joint density g on \mathbb{R}^n and it is a product: $g(x_1, \ldots, x_n) = f_1(x_1)f_2(x_2) \ldots f_n(x_n)$ for some nonnegative measurable functions of one variable. Show then that X_1, \ldots, X_n are independent¹.

(c) Suppose $X_1, X_2, \ldots, X_{100}$ are independent. Let

$$Y_1 = h_1(X_1, X_2, X_{100}), Y_2 = h_2(X_3, X_4, \dots, X_{77}), Y_3 = h_3(X_{78}, X_{89}, X_{90}, X_{91}),$$

where h_1, h_2, h_3 are measurable on the appropriate dimensional Euclideal space. Show that Y_1, Y_2, Y_3 are independent.

¹It is not assumed that f_i are densities.