- 1. Let Ω be the set of all strictly positive integers, with \mathcal{A} being all subsets.
 - (a) Let $\mu : \mathcal{A} \to [0, \infty)$ be given by $\mu(A) = |A|$ for $A \in \mathcal{A}$. Show that μ is a measure on \mathcal{A} .
 - (b) Identify a measurable function X with the sequence $\{x_n = X(n)\}$. Show $X \in L^1(\mu)$ iff $\sum |x_n| < \infty$ and then $\int X d\mu = \sum x_n$.
 - (c) More generally fix any non-negative numbers $\{w_n : n \ge 1\}$ (weights). Define : $\nu : \mathcal{A} \to [0, \infty)$ be given by $\nu(\mathcal{A}) = \sum \{w_n : n \in \mathcal{A}\}$. Show ν is a measure and $X \in L^1(\nu)$ iff $\sum w_n |x_n| < \infty$ and then $\int X d\nu = \sum w_n x_n$.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous function which is zero outside a bounded interval. Show that the Riemann integral $R \int f(x) dx$ equals the Lebesgue integral $L \int f d\lambda$.¹
- 3. Let $\Omega = \mathbb{R}$, and \mathcal{A} be the collection of countable sets and their complements. Let $\nu : \mathcal{A} \to [0, 1]$ be a measure given by

$$\nu(A) = \begin{cases} 0 & \text{if A is countable} \\ 1 & \text{if } A^c \text{ is countable} \end{cases}$$

Show $X : \mathbb{R} \to \mathbb{R}$ is measurable iff there is a countable set A and a number a such that $X(\omega) = a$ for all $\omega \in A^c$. Show that all measurable functions are in $L^1(\nu)$ and describe $\int X d\nu$.

4. Define for $x, y \in [0, 1)$, their sum $x \oplus y$ to be

$$\begin{array}{ll} x+y & \text{if } x+y < 1 \text{ and} \\ x+y-1 & \text{otherwise.} \end{array}$$

Show $x \oplus y \in [0, 1)$. This is addition modulo one. Show that for any Borel set $A \subset [0, 1)$ the set $A \oplus x = \{z \oplus x : z \in A\}$ is again Borel and further $\lambda(A) = \lambda(A \oplus x)$.

- 5. Consider $(\mathbb{R}, \mathcal{B})$.
 - (a) We define a set A to be symmetric if: $\omega \in A \Leftrightarrow (-\omega) \in A$. Show that the collection \mathcal{S} of all symmetric Borel sets is a σ -field. Show a function X is \mathcal{S} measurable iff it is Borel and satisfies $X(\omega) = X(-\omega)$ for all points $\omega \in \mathbb{R}$.
 - (b) We define a set A to be 'integer invariant' if: $x \in A \Leftrightarrow x+1 \in A$. Show the collection of all invariant Borel sets \mathcal{I} is a sigma field. Show that X is \mathcal{I} measurable iff X is Borel and $X(\omega) = X(\omega+1)$ for all $\omega \in \mathbb{R}$.
- 6. Let $\Omega = C[0, 1]$, the collection of all real valued continuous functions on [0, 1]. For $0 \le t \le 1$, define the evaluation map $e_t : \Omega \to R$ by $e_t(f) = f(t)$. Let $F = \{e_t : 0 \le t \le 1\}$. Let $\mathcal{B} = \sigma(F)$, the smallest σ -field that makes each function in F measurable.
 - (a) Show that singleton subsets of Ω are in \mathcal{B} .
 - (b) Let $A = \{\varphi \in \Omega : \max_{0 \le t \le 1} |\sin t \varphi(t)| < 0.2\}$. Show that $A \in \mathcal{B}$.

¹from now on we will use $\int f(x) dx$ to mean $\int f d\lambda$