Homework 2

Let Ω be a non-empty set.

1. Let \mathcal{C} be any collection of subsets of Ω . Let

 $\mathcal{S}_0 = \{ B : B \in \mathcal{C} \text{ or } B^c \in \mathcal{C} \text{ or } B = \Omega \text{ or } B = \emptyset \}$

If S consists of all possible finite intersections of sets in S_0 , then show that S is a semifield. Show finite disjoint union of sets in a semifield is a field. Conclude finite disjoint union of sets in S is $\mathcal{F}(\mathcal{C})$ the field¹ generated by \mathcal{C} .

2. Consider $(\Omega.\mathcal{A})$ a measurable space. Let $n \geq 1$ integer. Consider the following collection of subsets of Ω^n :

 $\mathcal{S} = \{A_1 \times A_2 \times \cdots \times A_n : \forall i \quad A_i \in \mathcal{A}\}$

Show that this is a semifield of subsets of Ω^n .

- 3. Let $\mathcal{F} = \{A : A \text{ is finite}; \text{ or } A^c \text{ is finite}\}$. and $\mathcal{A} = \{A : A \text{ is countable}; \text{ or } A^c \text{ is countable}\}$.
 - (a) Show that \mathcal{F} is a field on Ω
 - (b) Show that \mathcal{A} is a σ -field on Ω
 - (c) Let us specialize: $\Omega = R$ and \mathcal{A} as above. Define $\mu : \mathcal{A} \to [0, 1]$ by

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is countable and} \\ 1 & \text{otherwise.} \end{cases}$$

Show that this is a probability on \mathcal{A} .

- (d) The above μ takes only two values and assigns zero to all singletons. Do you think you can get such a probability on \mathcal{B} the Borel σ -field?
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Define for $x \in \mathbb{R}$ and $\delta > 0$;

$$O(x,\delta) = \sup\{|f(u) - f(v)| : u, v \in (x - \delta, x + \delta)\}.$$

- (a) Show that the limit: $\lim_{\delta \downarrow 0} O(x, \delta)$ exists, denote it by O(x).
- (b) Show that f is continuous at x iff O(x) = 0. Show that for each $\epsilon > 0$, the set $\{x \in \mathbb{R} : O(x) < \epsilon\}$ is an open set².
- (c) Conclude that the set of continuity points is a Borel set.
- 5. Suppose that $(\Omega, \mathcal{A}, \mu)$ is a measure space.³
 - (a) Let

$$\mathcal{I} = \{ B \subset \Omega : (\exists A \in \mathcal{A}) \ \mu(A) = 0, B \subset A \}.$$

Show that

¹Thus a field generated can be gotten in three steps. Unfortunately not so for σ -field.

²Here the symbol O in $O(x, \delta)$ and O(x) stands for 'oscillation'.

³If $A \in \mathcal{A}$ and $\mu(A) = 0$ and $B \subset A$, then we feel $\mu(B) = 0$. But we may be unable to say so because $B \notin \mathcal{A}$.

i. $B_1 \in \mathcal{I}, B_2 \subset B_1$ implies $B_2 \in \mathcal{I}$ and

ii. countable union of sets in ${\mathcal I}$ is again in ${\mathcal I}$

(b) Let

$$\overline{\mathcal{A}} = \{A\Delta N : A \in \mathcal{A}; N \in \mathcal{I}\} \text{ and } \overline{\mu}(A\Delta N) = \mu(A).$$

- i. $\overline{\mathcal{A}}$ is a σ -field which includes \mathcal{A} ;
- ii. $\overline{\mu}$ is a good definition(?) and is a measure on $\overline{\mathcal{A}}$;

iii. $\overline{\mu}$ extends μ ;

iv. If ν is any measure on $\overline{\mathcal{A}}$ which extends μ the $\nu = \overline{\mu}.^4$

Lebesgue measure⁵ Define F(x) = 0 for $x \le 0$; and F(x) = x for $0 \le x \le 1$; and F(x) = 1 for $x \ge 1$.

- (a) Show it is probability distribution function.
- (b) If μ₀ is the corresponding probability, show that
 i. μ(I) = length of I for every interval I ⊂ [0, 1],
 ii. μ([0, 1]^c) = 0.

This is called uniform probability on [0, 1] or also Lebesgue measure on [0, 1].

- (c) For any integer n positive or negative define $\mu_n(A) = \mu_0(A-n)^6$
 - i. Show that μ_n(·) is also a probability on the Borel σ-field B of the real line.
 ii. Show μ_n((n, n + 1]) = 1 and μ_n((n.n + 1]^c) = 0
 It is called uniform distribution on the interval (n, n + 1].
- (d) Define now for any Borel set $A \subset R$,

$$\lambda(A) = \sum_{-\infty}^{\infty} \mu_n(A).$$
 ('two sided sum'?).

- i. Show that $\lambda(\cdot)$ is countably additive.
- ii. Show that λ extends concept of length: i.e. for any a < b;

$$\lambda(a,b) = \lambda(a,b] = \lambda[a,b) = \lambda[a,b] = b - a$$

- iii. Show λ is translation invariant: $\lambda(A) = \lambda(A+x)$ for $x \in R, A \in \mathcal{B}$.
- iv. Show $\lambda(cA) = |c|\lambda(A)$ for $c \in R$. Here $cA = \{cx : x \in A\}$
- v. Show that if μ is translation invariant measure on \mathcal{B} with $\mu[0,1] = 1$, then $\mu = \lambda$.
- vi. Show that if μ is a translation invariant measure on \mathcal{B} with $\mu[0,1] < \infty$, then μ is a multiple of λ .

⁴The measure space $(\Omega, \overline{\mathcal{A}}, \overline{\mu})$ is called completion of the measure space $(\Omega, \mathcal{A}, \mu)$. ⁶For n = 0, this is the above μ_0 , so no confusion.

- vii. If μ is a translation invariant measure on \mathcal{B} with $\mu[0,1] = \infty$, then show that $\mu(I) = \infty$ for every non-empty interval (a, b).⁷
- 6. Suppose that (Ω, \mathcal{A}) is a measurable space and there is a set M which is important but not in \mathcal{A} . We shall define the σ -field generated by \mathcal{A} along with M. Let

$$\mathcal{A}^* = \{ (A \cap M) \cup (B \cap M^c) : A, B \in \mathcal{A} \}$$

Show this is a σ -field; includes M and all sets in \mathcal{A} and is the smallest such⁸

⁷This is uninteresting. Here are two $\mu(A) = |A|$; thus if A is an infinite set then $\mu(A) = \infty$. Or $\nu(A) = \text{zero}$ or infinity according as A is countable or not.

⁸If we had a probability (or any measure) on \mathcal{A} , can you extend it to this larger bag of sets? Is the exention Unique ?