- 1. Let A and B be two $k \times k$ symmetric non-negative definite matrices. Their Hadamard product is $C = ((c_{ij}))$ where $c_{ij} = a_{ij}b_{ij}$, entrywise product. Show that C is also non-negative definite.
- 2. Suppose we have a random variable with moments μ_k (all finite), that is, $\mu_k = E(X^k)$ for $k \ge 0$, where, of course, $\mu_0 = 1$. Show that the following matrix is non-negative definite.

$\int \mu_0$	μ_1	•••	μ_k	
μ_1	μ_2	•••	μ_{k+1}	
μ_2	μ_3	•••	μ_{k+2}	
•	•	•••		
•	•	•••		
	•	• • •		
$\setminus \mu_k$	μ_{k+1}	• • •	μ_{2k} /	

- 3. Show that $f(x) = \frac{1}{2}e^{-|x|}$ for $-\infty < x < \infty$ is a probability density. This is called Laplace density. Let X be a random variable with this density. Show $\varphi_X(t) = \frac{1}{1+t^2}$.
- 4. Show $h(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ for $-\infty < x < \infty$ is a probability density. This is called Cauchy density. Let Y be a random variable with this density. Show that $\varphi_Y(t) = e^{-|t|}$. [use inverse Fourier transform!]
- 5. Show that the Kernel $K(s,t) = e^{-|s-t|}$ defined on $R \times R$ is non-negative definite.
- 6. (Measurability issues)
 - (a) Consider C[0,1] with sup norm topology. Show that the Borel signafield (that is, generated by open sets) is same as the one we described via evaluation maps.
 - (b) The cointossing space 2^{∞} is, under product topology, a compact metric space. Show the sigma-field we defined is its Borel sigma-field.
 - (c) Is a convex set in \mathbb{R}^2 necessarily Borel? What about convex subsets of \mathbb{R} ?
 - (d) If A and B are two closed subsets of the real line, show that $A + B = \{x + y : x \in A, y \in B\}$ is Borel. This is not true if A, B were known only to be Borel, not easy to show.
 - (e) If $B \subset R$ with $\lambda(B) > 0$, show that $B B = \{x y : x, y \in B\}$ contains a nondegenerate interval around zero.
 - (f) Let \mathcal{L}_2 be the Lebesgue measurable sets of \mathbb{R}^2 , completion of Borel sets of \mathbb{R}^2 w.r.t. λ^2 . Let \mathcal{L} be Lebesgue measurable sets of \mathbb{R} . Assume that there are non-Lebesgue measurable sets in \mathbb{R} . Show that \mathcal{L}_2 is NOT the product sigma field $\mathcal{L} \otimes \mathcal{L}$.
 - (g) Can there be $f: R \to R^2$ which is one-one, onto, measurable and $f^{-1}: R^2 \to R$ is also measurable?
 - (h) If f is measurable then |f| is measurable. If |f| is measurable, do you think f is measurable?

7. Let $X = (X_1, \ldots, X_k)$ be Gaussian vector with mean vector μ and covariance matrix Σ . Assume that Σ is non-singular. Show that X has a density and is given by

$$g(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-(x-\mu)^t \Sigma^{-1} (x-\mu)/2}; \qquad x \in \mathbb{R}^n$$

8. Show using 'convolution formula': if $X \sim N(0, \sigma^2)$ and $Y \sim N(0, \tau^2)$, independent then $X + Y \sim N(0, \sigma^2 + \tau^2)$.