
Computer Science II Numerical Methods Semester II 2019/20
http://www.isibang.ac.in/∼athreya/Teaching/cs219 Worksheet 21-1-2020

1. (to be completed by 12:20pm) Let 0 < h and for n ≥ 1 let

an =
hn

n!
.

Show that for any � > 0 there is a N(�, h) ≡ N ≥ 1 such that

0 < an < �, for all n ≥ N1

2. The below R-code is available in Dropbox shared folder (bp.R)

> bitsOfPrecision = function(x)max(which(x != x*(1+2^-(1:60))))

> bitsOfPrecision(.Machine$double.xmin/2)

> # found at

> # https://r.789695.n4.nabble.com/

> # double-xmin-really-the-smallest-non-zero-normalized-floating-point-number-td4675820.html

Try to understand how R stores numbers below .Machine$double.xmin.

3. The below R-code is available in Dropbox shared folder (exptaylor.R)

> texpsum = function(x,n= 1500){

+ # texpsum : evaluates taylor polynomial of exp upto degree n at x

+ #

+ # Synopsis: texpsum(x)

+ # texpsum(x,n)

+ #

+ # Input: x = argument

+ # n = (optional) maximum number of terms. Default: n = 1500

+ #

+ # Output: texpsum = value of nth degree taylor polynomial at x

+ term = 1

+ ssuma = term

+ m= n+1

+ for(k in 2:m){

+ term = term*x/(k-1) # Next term in the series

+ ssuma = ssuma + term

+ }

+

+ return(ssuma)

+ }

Using the above code, plot the taylor polynomial of
degree n = 2, 4, 6, 8, 10 along with the true exponen-
tial function. For instance on the right is a plot of
the taylor polynomial of degree n = 0 along with the
exponential function.

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

x

Pl
ot

 o
f E

xp
(x

) v
er

su
s

te
xp

su
m

(x
,0

)

1While identifying N find the best possible N .

4. The below R-code is available in Dropbox shared folder (expseries.R)

> expseries = function(x,tol= 5e-9,n= 1500){

+ # expSeries Finds a taylor polynomial that approximates taylor series for exp.

+ #

+ # Synopsis: expseries(x)

+ # expseries(x,tol)

+ # expseries(x,tol,n)

+ #

+ # Input: x = argument of the exp function, i.e., compute exp(x)

+ # tol = (optional) tolerance on accumulated sum. Default: tol = 5e-9

+ #

+ # n = (optional) maximum number of terms. Default: n = 1500

+ #

+ # Output: ssum = value of taylor polynomial of degree n or tolerance is met.

+ # Calculation is terminated when T_k/S_k < tol, where T_k is the

+ # kth term in the polynomial and

+ # S_k is value of taylor polynomial of degree k

+

+ term = 1

+ ssum = term

+ Eabs= c()

+ Eabs[1] = abs(ssum-exp(x)) # Initialize

+ for(k in 2:n){

+ term = term*x/(k-1) # Next term in the series

+ ssum = ssum + term

+ Eabs[k] = abs(ssum-exp(x))

+ if(abs(term/ssum)<tol) break

+ }

+ }

Below is a tabulation of results at x=1 for the approximation to the exponential function and a plot of how
the absolute difference decreases. Using the above code create a similar output of results at x=10, x=-10
and comment on the differences; along with how you reduce the error.

Series approximation to exponential at x = 1

k kth-Term kth-Pol Abs Diff

1 1.000000e+00 1.718282 1.000000e+00

2 1.000000e+00 2.000000 7.182818e-01

3 5.000000e-01 2.500000 2.182818e-01

4 1.666667e-01 2.666667 5.161516e-02

5 4.166667e-02 2.708333 9.948495e-03

6 8.333333e-03 2.716667 1.615162e-03

7 1.388889e-03 2.718056 2.262729e-04

8 1.984127e-04 2.718254 2.786021e-05

9 2.480159e-05 2.718279 3.058618e-06

10 2.755732e-06 2.718282 3.028859e-07

11 2.755732e-07 2.718282 2.731266e-08

12 2.505211e-08 2.718282 2.260552e-09

13 2.087676e-09 2.718282 1.728764e-10

Truncation error after 13 terms is

1.728764e-10

Plot of Absolute Differences

●

●

●

●
● ● ● ● ● ● ● ● ●

2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

k

Ea
bs

