
Computer Science II January 30th, 2020 Quiz 3 Score

Name: Solution

For each of the following indicate whether f(n) = O(g(n)), f(n) = Ω(g(n)),f(n) = Θ(g(n)),f(n) = o(g(n))

1. f(n) = nbn, for b ∈ (0, 1) and g(n) = 1
n3

2. f(n) = nlog2 log2 n and g(n) = 2(log2 n)
log2 n

Solution:

We say that:

� f(n) = O(g(n)) if there exists N0 ∈ N and c > 0 such that f(n) ≤ cg(n) for all n ≥ N0

� f(n) = Ω(g(n)) if there exists N0 ∈ N and c > 0 such that f(n) ≥ cg(n) for all n ≥ N0

� f(n) = Θ(g(n)) if there exists N0 ∈ N and c1, c2 > 0 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ N0

� f(n) = o(g(n)) if for every c > 0 there exists N0 such that f(n) ≤ cg(n) for all n ≥ N0

It is clear that if f(n) = o(g(n)). This immediately implies that f(n) = O(g(n)) and f(n) �= Ω(g(n)). Conse-
quently, f(n) �= Θ(g(n)),

Secondly, if f(n) = Θ(g(n)) this immediately implies that f(n) = O(g(n)), f(n) = Ω(g(n)) and f(n) �= o(g(n)).

1. As b < 1 there is a δ > 0 such that b = 1
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. Now for any n ≥ 1
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From both the displays, for n ≥ 5,

0 ≤ f(n)

g(n)
≤ 64

δ5n
.

Let � > 0 be given. Then there exists an N > 6 such that 1
N

< δ5�
64

. Therefore for all n ≥ N we have that

0 ≤ f(n) < g(n)�.

As � > 0 was arbitrary, we can conclude that f(n) = o(g(n))

2.Solution: For any n ≥ 1, we have

f(n) = nlog2 log2 n = 2(log2 n)(log2 log2 n) = 2(log2 log2 n)(log2 n) = (log2 n)
log2 n =

1

2
g(n).

Hence f(n) = Θ(g(n)).


