Due Date: March 31st, 2020

1. (a) Find a basis for Range(Q), where Q and its reduced form are:

$$Q = \begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & 2 & 4 & 1 \\ -2 & 1 & 0 & -2 \\ 1 & 1 & 3 & -2 \end{pmatrix}; \qquad (Q|b) \to \begin{pmatrix} 1 & 1 & 3 & -2 & b_1 \\ 0 & 2 & 4 & 1 & b_2 \\ 0 & 0 & 0 & -15 & 2b_3 + 4b_1 - 3b_2 \\ 0 & 0 & 0 & 0 & -15b_4 + 15b_1 \end{pmatrix}$$

- (b) Find an orthogonal basis for Range(Q).
- 2. Let $v_1, v_2, \ldots v_7$ be the columns of the matrix A. A and the results of row reducing $(A \mid \theta)$ towards an echleon form and $(A \mid b)$ to echelon form are given.

	(1	2	4	2	2	1	9			$\binom{3}{3}$	0	2	8	0	19	5	0)
A =	2	1	3	5	1	-9	7			0	3	5	-1	3	11	11	0
	5	3	2	6	3	-8	13		$(A \mid 0)$	0	0	1	1	0	-2	1	0
	2	1	3	5	3	-11	9		$(A \mid b) \rightarrow$	0	0	0	0	1	-1	1	0
	3	2	1	3	1	-2	7			0	0	0	0	0	0	0	0
	2	1	3	5	2	-10	8)		0	0	0	0	0	0	0	0
		(1)	0	$\frac{2}{3}$	$\frac{8}{3}$	0	$-\frac{19}{3}$	$\frac{5}{3}$	$\frac{1}{3}(-2b_2+b_1)$								
(A b)		0	1	$\frac{5}{3}$	$\frac{1}{3}$	1	$\frac{11}{3}$	$\frac{11}{3}$	$\tfrac{1}{3}(b_2-2b_1)$								
		0	0	1	1	0	-2	1	$-\frac{3}{19}b_3 + \frac{1}{19}b_1 + \frac{7}{19}b_2$								
	\rightarrow	0	0	0	0	1	-1	1	$\tfrac{1}{2}(b_4 - b_2)$			•					
		0	0	0	0	0	0	0	$38b_5 - 4b_1 - 9b_2 - 26b_3 +$	$19b_4$							
		0	0	0	0	0	0	0	$38b_6 - 19b_2 - 19b_4$								

- (a) Find a basis of the $Span(v_1, v_2, \ldots, v_7)$ from the given set of vectors v_1, v_2, \ldots, v_7 .
- (b) Decide whether the vectors y and z given below are in the range(A) ?

$$y = \begin{pmatrix} 5\\2\\0\\0\\1\\1 \end{pmatrix}, \qquad z = \begin{pmatrix} 0\\-1\\0\\1\\0\\0 \end{pmatrix}.$$

3. The matrix Q along with the echelon forms of (Q|b) and $(Q|\theta)$ are given. Find a basis for Null(Q).

	$\binom{2}{2}$	3	3	1	0	7				$\begin{pmatrix} 1 \end{pmatrix}$	0	3	-1	0	$^{-1}$	0)
	3	1	8	2	4	4				0	7	-7	-1	$^{-8}$	13	0
Q =	1	2	1	0	-1	4		$(Q \theta)$	$(Q \theta) \rightarrow$	0	0	0	1	1	1	0
	3	1	8	1	3	3				0	0	0	0	0	0	0
	-2	-1	-5	1	0	-1)			0	0	0	0	0	0	0 /

$$(Q|b) \rightarrow \begin{pmatrix} 1 & 0 & 3 & -1 & 0 & -1 & 4b_3 - 3b_1 + b_2 \\ 0 & 1 & -\frac{1}{7} & -\frac{1}{7} & -\frac{8}{7} & \frac{13}{7} & \frac{1}{7}(2b_2 - 3b_1) \\ 0 & 0 & 0 & 1 & 1 & 1 & \frac{1}{3}(-7b_3 + 5b_1 - b_2) \\ 0 & 0 & 0 & 0 & 0 & 3b_4 - 4b_2 - 7b_3 + 5b_1 \\ 0 & 0 & 0 & 0 & 0 & 3b_5 - 11b_1 + 4b_2 + 16b_2 \end{pmatrix}$$

4. The vectors

$$v_1 = \begin{pmatrix} 1\\0\\-2\\1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1\\2\\1\\1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -2\\1\\-2\\-2 \end{pmatrix}.$$

are a basis for a sub-space W of R^4 . Find an orthogonal basis for W.

- 5. (a) Find a basis for Null(M), where $M = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 4 & 5 & -1 & 6 \end{pmatrix}$.
 - (b) The vectors $v = (-3, 1, 0, 1, 1)^T$ and $w = (3, -2, 0, 1, 0)^T$ are in Null(M). Find vectors a, b, c, d, none of which are scalar multiples of v or w, such that the following conditions are true, or explain in one or two sentences why it is impossible to find such a vector.
 - $\{v, w, a\}$ is a basis for Null(M).
 - $\{v, w, a, b\}$ is a basis for Null(M).
 - $\{v, w, c\}$ is a linearly independent set of vectors that is not a basis for Null(M).
 - $\{v, w, d\}$ is a linearly dependent set of vectors.

 $6. \ Let$

$$A_{3\times3} = \begin{bmatrix} 1 & 4 & 6\\ 2 & 4 & 8\\ -1 & 0 & -2 \end{bmatrix}.$$

- (a) Decide whether the column vector's of the matrix $A_{3\times 3}$ are linearly independent or not.
- (b) If the columns A_1, A_2, A_3 of A are linearly dependent, express A_1 as a linear combination of A_2 and

A₃. If they are independent, comment on the solution set for Ax = b, where $b_{3\times 1} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$.

- 7. Solve the following questions, giving reasons for your answer. Please write in complete sentences. Feel free to ask me for extra sheets if you are short of space.
 - (a) Let $A_{n \times n}$ be a matrix. Is $A + A^T$ symmetric or not?

(b) Let
$$A_{3\times3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
. Find A^{999}, A^{1000} .

- (c) You have 34×34 singular matrix A. Let b be a 34×1 vector. Describe all the possibilities for the solution set of the 34×34 system Ax = b.
- (d) If $A_{300\times300}^3 = \theta_{300\times300}$ (zero matrix), can $A_{300\times300}$ be non-singular ?
- (e) Suppose $C_{638\times953}$ is a matrix whose echelon form has 308 zero rows. Find the Nullity (C^T) .
- (f) Let W be a 3-dimensional subspace of \mathbb{R}^5 . We are given that

$$W = \operatorname{span}\left\{\begin{pmatrix}1\\-5\\\frac{17}{5}\\365\\\sqrt{23}\end{pmatrix}, \begin{pmatrix}1\\0\\1\\\sqrt{17}\\-8\end{pmatrix}, \begin{pmatrix}2\\3\\4\\0\\-9\end{pmatrix}\right\}.$$
 Find a linearly independent spanning set for $W.$

(g) Let $W = \{ \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} : 3x_1 + 4x_2 - 6x_3 = 0 \}$. Give an example of a non-zero vector that is orthogonal to all elements of W