
For f : R → R and x �= y, let

f [x, y] =
f(x)− f(y)

x− y
.

Convergence of Secant Method: Let f : R → R and f be twice differentiable with continuous second derivative.
Suppose

� there is a c ∈ R such that f(c) = 0 and f �(c) �= 0.

Then there is an η > 0 such that if x0, x1 ∈ (c− η, c+ η) then

(a) for all k ≥ 1,

xk = xk−1 − f(xk−1)

f [xk−1, xk−2]

is a well defined sequence of real numbers with xk ∈ (c− η, c+ η);

(b) there is a M > 0 such that
| xk − c |≤ M | xk−1 − c || xk−2 − c |

for all k ≥ 2;

(c) xk → c as k → ∞; and

(d) there is a C1 > 0 such that

| xk − c |≤ C1 | xk−1 − c |
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for all k ≥ 1.

Proof: As f is twice differentiable this implies that the derivative of f is continuous. As f �(c) �= 0 there is a
0 < δ < 1, such that

f �(x) �= 0 for all x ∈ [c− δ, c+ δ]. (why ?)

and hence
f [x, y] �= 0 for all x, y,∈ [c− δ, c+ δ] with x �= y. (why ?)

Fix

M = 1 + sup
z,x�=y∈[c−δ,c+δ]

| f ��(z)

2f [x, y]
|, η =

δ

M
, and x0, x1 ∈ (c− η, c+ η).

Note that 1 ≤ M < ∞ (why ?) and hence 0 < η ≤ δ.

Proof of (a) and (b): We shall proceed by induction.

• Case n = 2: As x0, x1 ∈ (c− η, c+ η) and by definition of η, this implies that f [x0, x1] �= 0 and

x2 = x1 − f(x1)

f [x0, x1]
(7)

is well defined. Let p : R → R be given by

p(x) = f(x1) + f [x0, x1](x− x1).

Now,

f(x)− p(x) = f(x)− [f(x1) + f [x0, x1](x− x1)] = [f [x, x1]− f [x0, x1]] (x− x1) = f [x, x1, x0](x− x0)(x− x1).

Now there is a ξ ∈ the smallest interval containing {x, x1, x0}, such that f [x, x1, x0] =
1
2
f ��(ξ) (See

Worksheet 28-1-2020). Using this and the above we have

f(x)− p(x) =
1

2
f ��(ξ)(x− x0)(x− x1)

As f(c) = 0, p(c) = f(x1) + f [x0, x1](c− x1) we obtain

0 = f(x1) + f [x0, x1](c− x1) +
1

2
f ��(ξ)(c− x0)(c− x1)



Using the fact from (7) that 0 = f(x1) + f [x0, x1](x2 − x1), in the above and rearranging the terms
we obtain

c− x2 =
1

2

f ��(ξ)

f [x0, x1]
(c− x1)(c− x0).

Now, ξ, x0, x1 ∈ (c− η, c+ η) ⊆ [c− δ, c+ δ]. Using the definition of M , the above implies

| c− x2 |≤ M | c− x0 | | c− x1 | . (8)

and
| c− x2 |< Mη2 = δη < η. (9)

From (7), (8), (9) we have verified the case n = 2.

• Fix k ≥ 2 and asssume for 2 ≤ n ≤ k :

xn = xn−1− f(xn−1)

f [xn−1, xn]
is well defined, | xn−c |≤ M | xn−1−c | | xn−2−c | with xn ∈ (c−η, c+η).

• Case n = k+ 1: From the induction hypothesis, we have that Now, xk, xk−1 ∈ (c − η, c + η). This
implies that

xk+1 = xk − f(xk)

f [xk−1, xk]
(10)

is well defined.

Let p : R → R be given by
p(x) = f(xk) + f [xk−1, xk](x− xk).

Now,

f(x)− p(x) = f(x)− [f(xk) + f [xk−1, xk](x− xk)] = [f [x, xk]− f [xk−1, xk]] (x− xk)

= f [x, xk, xk−1](x− xk−1)(x− xk)

Now there is a ξk ∈ the smallest interval containing {x, xk, xk−1}, such that f [x, xk, xk−1] =
1
2
f ��(ξk)

(See Worksheet 28-1-2020). Using this and the above we have

f(x)− p(x) =
1

2
f ��(ξk)(x− xk−1)(x− xk)

As f(c) = 0, p(c) = f(xk) + f [xk−1, xk](c− xk) we obtain

0 = f(xk) + f [xk−1, xk](c− xk) +
1

2
f ��(ξk)(c− xk−1)(c− xk)

Using the fact from (10) that, 0 = f(xk)+ f [xk−1, xk](xk+1 −xk), in the above and rearranging terms
we obtain

c− xk+1 =
1

2

f ��(ξk)

f [xk−1, xk]
(c− xk)(c− xk−1). (11)

Now, ξk, xk−1, xk ∈ (c− η, c+ η) ⊆ [c− δ, c+ δ]. Using the definition of M , the above implies

| c− xk+1 |≤ M | c− xk−1 | | c− xk | . (12)

and
| c− xk+1 |< Mη2 = δη < η. (13)

From (10), (12), (13) we have verified the case n = k + 1.

So by induction we have proved (a) and (b).

Proof of (c): By part (a) and (b), we first note that for n ≥ 1,

| xn − c |≤ η

M
| xn−1 − c | .

By an inductive argument it is easily seen we have for all n ≥ 1,

| xn − c |≤ ηn

Mn
| x0 − c |< ηn+1

Mn
= ηδn < δn.

Let b > 0 such that δ = 1
1+b

. By induction we have that for all n ≥ 1, δn < 1
nb

. Let � > 0 be given. Let

N = 1
b�
. For all n ≥ N we have that

| xn − c |≤ δn <
1

Nb
< �.

As � > 0 was arbitrary we have that xn → c as n → ∞. We have thus shown (c).



Proof of (d): We shall assume without loss of generality that xn �= c for all n ≥ 1 and we will use the
fact done in (11) in part (a) that for k ≥ 2 there is ξk ∈ the smallest interval containing {c, xk, xk−1},

| c− xk+1 |
| c− xk || c− xk−1 | =

1

2
| f ��(ξk)

f [xk−1, xk]
| . (14)

Now, ξk, xk−1, xk ∈ (c− η, c+ η) ⊆ [c− δ, c+ δ]. Us Let

p =
1 +

√
5

2
and so by our choice of p we have p2 − p− 1 = 0

For n ≥ 1, let

zn =
| xn − c |

| xn−1 − c |p .

Now, by our choice of p we have for n ≥ 2

zn(zn−1)
1
p =

| xn − c |
| xn−1 − c |p

| xn−1 − c | 1p
| xn−2 − c |

=
| xn − c |

| xn−1 − c || xn−2 − c | | xn−1 − c | 1p−p+1

=
| xn − c |

| xn−1 − c || xn−2 − c | | xn−1 − c |
1−p2+p

p

=
| xn − c |

| xn−1 − c || xn−2 − c |

Now using (14), there is a ξn ∈ the smallest interval containing {c, xn, xn−1}

zn(zn−1)
1
p =

1

2

f ��(ξn)

f [xn−1, xn]

If Sn = 1
2

f ��(ξn)
f [xn−1,xn]

then we have inductively for n ≥ 2,

zn = Sn(zn−1)
− 1

p =
n�

k=0

(Sn−k)
(−1)k

pk (z0)
(−1)n

pn

Now by assumptions on f we have that there is a m1 > 0,M1 > 0 such that

m1 < Sn < M1.

Hence there is a C > 0

zn < C
�n

k=0
1
pk (α0)

1
pn ,

with α0 = max{z0, 1
z0
}. As p > 1, we have that there is a C1 > 0 such that zn < C1.


