For f: R — R and = # y, let
Y

Convergence of Secant Method: Let f : R — R and f be twice differentiable with continuous second derivative.
Suppose

e there is a c € R such that f(c) =0 and f'(c) #0.
Then there is an > 0 such that if xo,z1 € (¢ —n,c+n) then

(a) for allk >1,

f(@r-1)
flzr—1,zR—2]
is a well defined sequence of real numbers with x, € (¢ —n,c+n);

(b) there is a M > 0 such that

T = Th1 —

|z —c|< M| zp—1—cl|| xg—2 — |
for all k > 2;
(¢) vk, — ¢ as k — oo; and

(d) there is a C1 > 0 such that
1+V5
xp—c|<Chlap—1—c| 2

for all k > 1.

Proof: As f is twice differentiable this implies that the derivative of f is continuous. As f’(c) # 0 there is a
0 < 6 < 1, such that
f'(x) #0 for all z € [c — 6, c+d]. (why ?)

and hence
flz,y] #0 for all x,y, € [c — §,c+ 8] with = # y. (why ?)
Fix /() 5
z
M=1+ sup | [ n=—, and xo,x1 € (¢ —mn,c+n).
z,x#YyE[c—8,c+6) 2f["£7 y] M

Note that 1 < M < oo (why ?) and hence 0 < 1 < 4.

Proof of (a) and (b): We shall proceed by induction.

e Case n =2: As 9,71 € (¢ —1n,c+n) and by definition of 7, this implies that f[zo,z1] # 0 and
f(z1)

To =21 — ——F—
: ! flzo,z1]

(M)
is well defined. Let p : R — R be given by

p(z) = f(z1) + flzo, z1](z — z1).

Now,

f(@) —p(@) = f(z) = [f(@1) + flzo, z1](z — z1)] = [flz, 21] = flzo, 21]] (x — 1) = flz, 21, 20](z — 20)(T — T1).

Now there is a € € the smallest interval containing {z,z1,x0}, such that flz,z1,z0] = 5 f"(€) (See
Worksheet 28-1-2020). Using this and the above we have

F(@) = p(a) = 3£ — wo)(@ — 21)
As f(c) =0, p(c) = f(z1) + flzo, z1](c — z1) we obtain

0= f(@1) + floo,aa)(c = 1) + 31 (€) e — wo)(c — 1)



Using the fact from (7) that 0 = f(z1) + flzo,z1](z2 — 1), in the above and rearranging the terms

we obtain 16
1
c—x2 = §m(c—m1)(c—xo)4
Now, &, zo, 21 € (c—n,¢+1n) C [c — §,c+ 8]. Using the definition of M, the above implies
lc—z2 |<KM|c—xo||c—a1]. (8)
and
| c— w2 |< My* =on <n. 9)

From (7), (8), (9) we have verified the case n = 2.
e Fix k > 2 and asssume for 2 <n<k:

f(@n-1)

is well defined, | zp—c|< M |Zp_1—c || Zn—2—c| with x, € (c—n,c+n).
f[l‘nflvxn]

Tn = Tn—-1—

e Case n =k + 1: From the induction hypothesis, we have that Now, zy,xx—1 € (¢ — n,c+ 7). This
implies that

Tht1 = Tk — 7}0[“_17%]

is well defined.
Let p: R — R be given by
p(x) = fzr) + flor—1, z6](z — n).
Now,
f@)=p) = [f@) = [fl@x) + floe—r, el(@ — 2zx)] = [fle, 2x] = flor—, zi]] (2 — 2p)
= [z ok, 2pa](e — 2e-1)(z — o)
Now there is a &, € the smallest interval containing {z, xx, Tx—1}, such that f[z,xr, xK—1] = %f”(fk)
(See Worksheet 28-1-2020). Using this and the above we have
1.,

f@) =p(z) = 57 (&) (@ = zr-1) (2 — 2x)

As f(e) =0, p(c) = f(zk) + flrr—1, zk](c — k) we obtain

0= f(on) + flonronl(c = ) + 5 (@)(e = anr)(e = m)

Using the fact from (10) that, 0 = f(zx) + f[zk—1, k] (Tr+1 — Tk), in the above and rearranging terms
we obtain

-z =17f"(£k) c—x1)(c— x
C— Try1 2f[mk71,xk]( k)( ~1)- (11)

Now, &, 2k—1,2k € (c—n,c+n) C [c — §,¢c+ §]. Using the definition of M, the above implies
|lc—zp1 |[SKM|c—zk_1||c—oi |- (12)
and
| ¢ — @pi1 |[< Mn? = dn <. (13)
From (10), (12), (13) we have verified the case n = k + 1.
So by induction we have proved (a) and (b). O
Proof of (c): By part (a) and (b), we first note that for n > 1,

|xn—c|§%|xn,1—c|.

By an inductive argument it is easily seen we have for all n > 1,

7,] n+1
n—cl|< —cl< =nd" <",
o=l A oy —cl< L =7
Let b > 0 such that § = ﬁ By induction we have that for all n > 1, §" < %. Let € > 0 be given. Let

N = i. For all n > N we have that

1
n—cl|<dm < — .
| © c|< <Nb<e

As € > 0 was arbitrary we have that z,, — ¢ as n — co. We have thus shown (c). O



Proof of (d): We shall assume without loss of generality that z, # c for all n > 1 and we will use the
fact done in (11) in part (a) that for k > 2 there is {x € the smallest interval containing {c, zx, zr—1},

| c— zpy1 | 1 1 (&)
le—ap|le—apa | 2 flog—1, 2] E (14)

Now, &k, Zk—1,2% € (c—n,c+1n) C [c—d,c+d]. Us Let

1 5 .
= +2\[ and so by our choice of p we have p> —p—1=0
For n > 1, let
L~ e
R
Now, by our choice of p we have for n > 2
1
zn(z )% = |2n —c| Jan-1—cl?
n\{<n—1 |Q’,‘n_1—c|p |xn_2—C|
= [on —c] |xn_1—c|%7”+1
(@t —cll@nz—c
| p — | 1=p24p
= |$n—1—C| P

EEEOE=ET:

| Zn —c]|

|xn71 _CH Tn—2 _C‘

Now using (14), there is a &, € the smallest interval containing {c, Zn, Tn—1}

11 (&)
(o) = S ]

1 £ (6n)
2 flen—1,2n

If s, = then we have inductively for n > 2,

n

Zn:S an p*H(Sn k)p ZO) p)

Now by assumptions on f we have that there is a m1 > 0, M; > 0 such that
my < Sp < M.

Hence there is a C > 0 .
n 1
< CZk:O pk (040)7717
with ag = max{zo, %} As p > 1, we have that there is a C7 > 0 such that z, < Cj. O



