Convergence of Newton Raphson Method: Let $f : \mathbb{R} \to \mathbb{R}$ and f be twice differentiable with continuous second derivative. Suppose

• there is a $c \in \mathbb{R}$ such that f(c) = 0 and $f'(c) \neq 0$.

Then there is an $\eta > 0$ such that if $x_0 \in (c - \eta, c + \eta)$ then

(a) for all $k \geq 1$,

$$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$$

is a well defined sequence of real numbers;

(b) there is a M > 0 such that

$$|x_k - c| \le M(x_{k-1} - c)^2$$

for all $k \ge 1$; and (c) $x_k \to c$ as $k \to \infty$.

Proof As f is twice differentiable this implies that the derivative of f is continuous. As $f'(c) \neq 0$ there is a $0 < \delta < 1$, such that

$$f'(x) \neq 0$$
 for all $x \in [c - \delta, c + \delta]$. (why?)

Fix

$$M = 1 + \sup_{x,y \in [c-\delta,c+\delta]} \left| \frac{f''(y)}{2f'(x)} \right|, \qquad \eta = \frac{\delta}{M}, \qquad \text{and} \qquad x_0 \in (c-\eta, c+\eta)$$

Note that $1 \leq M < \infty$ (why ?) and hence $0 < \eta \leq \delta$.

Proof of (a) and (b): We shall proceed by induction.

• Case n = 1: As $x_0 \in (c - \eta, c + \eta)$ and by definition of η , this implies that $f'(x_0) \neq 0$ and

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \tag{1}$$

is well defined. By Taylor's Theorem there exists ξ_0 between x_0 and c such that

$$f(c) = f(x_0) + (c - x_0)f'(x_0) + \frac{(c - x_0)^2}{2}f''(\xi_0).$$
(2)

Now f(c) = 0 and from (1) we have that $f(x_0) = (x_0 - x_1)f'(x_0)$. Substituting these in (2) we have

$$0 = (x_0 - x_1)f'(x_0) + (c - x_0)f'(x_0) + \frac{(c - x_0)^2}{2}f''(\xi_0)$$

This implies that

$$x_1 - c = \frac{f''(\xi_0)}{2f'(x_0)}(x_0 - c)^2.$$

Note that $\xi_0, x_0 \in (c - \eta, c + \eta) \subseteq [c - \delta, c + \delta]$. Using the definition of M, the above implies

$$|x_1 - c| \le M(x_0 - c)^2.$$
 (3)

From (1) and (3) we have verified the case n = 1.

 $\bullet \ \ Fix \ k \geq 1 \ and \ asssume \ for \ \ 1 \leq n \leq k \ :$

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 is well defined and $|x_n - c| \le M(x_{n-1} - c)^2$

• Case n = k + 1: From the induction hypothesis and as $x_0 \in (c - \eta, c + \eta), 0 < \delta < 1$,

$$|x_k - c| \le M(x_{k-1} - c)^2 \le \frac{1}{M} [M(x_0 - c)]^{2^k} < \frac{1}{M} [M\eta]^{2^k} = \eta \delta^{2^k - 1} < \eta$$

This implies that $f'(x_k) \neq 0$ and

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
(4)

is well defined. By Taylor's Theorem there exists ξ_k between x_k and c such that

$$f(c) = f(x_k) + (c - x_k)f'(x_k) + \frac{(c - x_k)^2}{2}f''(\xi_k).$$
(5)

Now f(c) = 0 and from (4) we have that $f(x_k) = (x_k - x_{k+1})f'(x_k)$. Substituting these in (5) we have

$$0 = (x_k - x_{k+1})f'(x_k) + (c - x_k)f'(x_k) + \frac{(c - x_k)^2}{2}f''(\xi_k)$$

This implies that

$$x_{k+1} - c = \frac{f''(\xi_k)}{2f'(x_k)}(x_k - c)^2$$

Note that $\xi_k, x_k \in (c - \eta, c + \eta) \subseteq [c - \delta, c + \delta]$. Using the definition of M, the above implies

$$|x_{k+1} - c| \le M(x_k - c)^2.$$
 (6)

From (4) and (6) we have proven the case n = k + 1.

So by induction we have proved (a) and(b).

Proof of (c): By part (b) and inductively we have for all $n \ge 1$,

$$|x_n - c| \le \frac{1}{M} [M(x_0 - c)]^{2^n} \le \frac{1}{M} \delta^{2^n} \le \delta^{2^n}.$$

Let b > 0 such that $\delta = \frac{1}{1+b}$. So for all $n \ge 1$,

$$\delta^{2^n} = \frac{1}{(1+b)^{2^n}} < \frac{1}{(1+b)^n} < \frac{1}{nb}$$

Let $\epsilon > 0$ be given. Let $N = \frac{1}{b\epsilon}$. For all $n \ge N$ we have that

$$|x_n - c| \le \frac{1}{M} \delta^{2^n} \le \delta^{2^n} < \frac{1}{Nb} < \epsilon$$

As $\epsilon > 0$ was arbitrary we have that $x_n \to c$ as $n \to \infty$. We have thus shown (c).

Since we have proved (a), (b) and (c) our proof is complete.