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Convergence of Newton Raphson Method: Let f : R — R and f be twice differentiable with continuous
second derivative. Suppose

e there is a c € R such that f(c) =0 and f'(c) #0.
Then there is an > 0 such that if zo € (c —n,c+n) then

(a) for allk >1, ( )
Tr—1
Tk = Tk—1 — m

is a well defined sequence of real numbers;
(b) there is a M > 0 such that
| 2p — ¢ |< M(zp_1 —c)?
for all k > 1; and

(c) vk, — ¢ as k — oo.

Proof As f is twice differentiable this implies that the derivative of f is continuous. As f’(c) # 0 there is a
0 < § < 1, such that
f'(z) #0 for all z € [c — 6, c+d]. (why ?)

Fix

f"(w) 5
M=1+ sup R n=—, and To € (c—n,c+n).
z,y€[c—8,c+5] | 2f’($) | M ( )

Note that 1 < M < oo (why ?) and hence 0 < 1 < 4.

Proof of (a) and (b): We shall proceed by induction.
e Case n=1: As z9 € (c —n,c+n) and by definition of 7, this implies that f’(zo) # 0 and

f(z0)
T =T — (o) (1)
is well defined. By Taylor’s Theorem there exists £, between xo and ¢ such that
_ ’ (C - xO)Q 1"
Fle) = f(zo) + (¢ = z0) f (z0) + ~—5——f" (k). (2)

Now f(c) =0 and from (1) we have that f(zo) = (zo — z1)f(z0). Substituting these in (2) we have

0= (@0~ 21)f(z0) + (e — 20) (wo) + E=2L 1 (60)

This implies that

X1 —C=

') e
57 (20) (zo — ).
Note that &, xz0 € (¢ —n,c+1n) C [c — §,c+ d]. Using the definition of M, the above implies

| 21 — ¢ |< M(zo — ¢)°. 3)

From (1) and (3) we have verified the case n = 1.

e Fix k > 1 and asssume for 1 <n<k:

f(Tn—1)

F@n) is well defined and | zn — ¢ |< M (-1 — 0)2

In = Tn—-1 —



e Case n = k + 1: From the induction hypothesis and as zo € (c—n,c+1),0 < § < 1,
1 k 1 k k_
|k — e € Mlano1 — ) < 3 [M(wo — O < o= M) = ns® <.

This implies that f'(zx) # 0 and

f(zk)
=K — 4
s =Tk = TS (4)
is well defined. By Taylor’s Theorem there exists &, between xzj and ¢ such that
/ (C - xk)z ”
fle) = flaw) + (e = zi) [ (2n) + 51" (&) ()

Now f(c) = 0 and from (4) we have that f(zx) = (zx — Tk+1)f' (zr). Substituting these in (5) we have

(c —xp)?

5 I (&)

0= (zx — 1) [ (zr) + (¢ — @x) f/(x1) +

This implies that
_ [T

Tk+1 —C= 2f’(xk)

Note that &,z € (¢ —n,¢+ 1) C [c — §,¢+ §]. Using the definition of M, the above implies

(zr — ).

| i1 — ¢ |[< M(ap — ) (6)
From (4) and (6) we have proven the case n =k + 1.

So by induction we have proved (a) and(b). O
Proof of (¢): By part (b) and inductively we have for all n > 1,

1 n 1 on n
|l‘n76|§H[M(l’[)*C)}2 SM(SQ §62 .
Let b > 0 such that § = ﬁb. So for all n > 1,
n 1 1 1
& = —.
aA+02 “U+o)r " nb

Let € > 0 be given. Let N = i. For all n > N we have that
1 omn 2mn 1
n—cl< =8 < — <e
| © c\_M5 <4 <Nb<6

As € > 0 was arbitrary we have that z, — ¢ as n — co. We have thus shown (c). O

Since we have proved (a), (b) and (c) our proof is complete. O



