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Convergence of Newton Raphson Method: Let f : R → R and f be twice differentiable with continuous
second derivative. Suppose

� there is a c ∈ R such that f(c) = 0 and f �(c) �= 0.

Then there is an η > 0 such that if x0 ∈ (c− η, c+ η) then

(a) for all k ≥ 1,

xk = xk−1 − f(xk−1)

f �(xk−1)

is a well defined sequence of real numbers;

(b) there is a M > 0 such that
| xk − c |≤ M(xk−1 − c)2

for all k ≥ 1; and

(c) xk → c as k → ∞.

Proof As f is twice differentiable this implies that the derivative of f is continuous. As f �(c) �= 0 there is a
0 < δ < 1, such that

f �(x) �= 0 for all x ∈ [c− δ, c+ δ]. (why ?)

Fix

M = 1 + sup
x,y∈[c−δ,c+δ]

| f ��(y)

2f �(x)
|, η =

δ

M
, and x0 ∈ (c− η, c+ η).

Note that 1 ≤ M < ∞ (why ?) and hence 0 < η ≤ δ.

Proof of (a) and (b): We shall proceed by induction.

• Case n = 1: As x0 ∈ (c− η, c+ η) and by definition of η, this implies that f �(x0) �= 0 and

x1 = x0 − f(x0)

f �(x0)
(1)

is well defined. By Taylor’s Theorem there exists ξ0 between x0 and c such that

f(c) = f(x0) + (c− x0)f
�(x0) +

(c− x0)
2

2
f ��(ξ0). (2)

Now f(c) = 0 and from (1) we have that f(x0) = (x0 − x1)f
�(x0). Substituting these in (2) we have

0 = (x0 − x1)f
�(x0) + (c− x0)f

�(x0) +
(c− x0)

2

2
f ��(ξ0)

This implies that

x1 − c =
f ��(ξ0)

2f �(x0)
(x0 − c)2.

Note that ξ0, x0 ∈ (c− η, c+ η) ⊆ [c− δ, c+ δ]. Using the definition of M , the above implies

| x1 − c |≤ M(x0 − c)2. (3)

From (1) and (3) we have verified the case n = 1.

• Fix k ≥ 1 and asssume for 1 ≤ n ≤ k :

xn = xn−1 − f(xn−1)

f �(xn−1)
is well defined and | xn − c |≤ M(xn−1 − c)2



• Case n = k+ 1: From the induction hypothesis and as x0 ∈ (c− η, c+ η), 0 < δ < 1,

| xk − c |≤ M(xk−1 − c)2 ≤ 1

M
[M(x0 − c)]2

k

<
1

M
[Mη]2

k

= ηδ2
k−1 < η.

This implies that f �(xk) �= 0 and

xk+1 = xk − f(xk)

f �(xk)
(4)

is well defined. By Taylor’s Theorem there exists ξk between xk and c such that

f(c) = f(xk) + (c− xk)f
�(xk) +

(c− xk)
2

2
f ��(ξk). (5)

Now f(c) = 0 and from (4) we have that f(xk) = (xk −xk+1)f
�(xk). Substituting these in (5) we have

0 = (xk − xk+1)f
�(xk) + (c− xk)f

�(xk) +
(c− xk)

2

2
f ��(ξk)

This implies that

xk+1 − c =
f ��(ξk)

2f �(xk)
(xk − c)2.

Note that ξk, xk ∈ (c− η, c+ η) ⊆ [c− δ, c+ δ]. Using the definition of M , the above implies

| xk+1 − c |≤ M(xk − c)2. (6)

From (4) and (6) we have proven the case n = k + 1.

So by induction we have proved (a) and(b).

Proof of (c): By part (b) and inductively we have for all n ≥ 1,

| xn − c |≤ 1

M
[M(x0 − c)]2

n ≤ 1

M
δ2

n ≤ δ2
n

.

Let b > 0 such that δ = 1
1+b

. So for all n ≥ 1,

δ2
n

=
1

(1 + b)2n
<

1

(1 + b)n
<

1

nb
.

Let � > 0 be given. Let N = 1
b�
. For all n ≥ N we have that

| xn − c |≤ 1

M
δ2

n ≤ δ2
n

<
1

Nb
< �.

As � > 0 was arbitrary we have that xn → c as n → ∞. We have thus shown (c).

Since we have proved (a), (b) and (c) our proof is complete.


