Question 2. Suppose that n > 2, f : R — R and a € R is such that,
f®(a) =0 for all k <n—1and f™(a) # 0. If f("(.) is continuous at a
then show that

(a) if n is even and f(™(a) > 0 then f has a local minimum at a,
(b) if n is even and f(™(a) < 0 then f has a local maximum at a,
(c) if n is odd then f has a point of inflection at a.

Solution: We are given: n > 2; f : R — R; a € R such that f(" is
continuous at a;

f®(a) = 0,¥ k <n—1; and f™(a) # 0. (1)

By Taylor’s theorem, there exists § > 0 such that for any x € (a — d,a + 9),
there exists ¢ = ¢(x, a) that lies between x and a such that

(x —a)"

f(z)=fla)+) Tf(k)(a) + (o).

n!

From our hypothesis,(1), this implies there exists 6 > 0 such that for any
x € (a—9,a+9), there exists ¢ = ¢(x, a) that lies between x and a such that

(z —a)"

n!

. . (n) .
Now f(" is continuous at a. Let ¢ = |f72(a)| there exists 0 < 1 < § such

that

f(@) = fla) + Fe). (2)

™) = f™ ) |<e  Vie(a—6b,a+6). (3)

(a)Let n is even and £ (a) > 0.
Let x € (a—d1,a+01), let ¢ be as in (2). This will imply ¢ € (a —d1,a+ 7).
So from (3) we have

™ (a)
2

f"(a)

(n)
5 = 7 (e) >

| f"(e) = f(a) |<

. Further (x—a)" > 0, as n is even number. Thus, for any « € (a—4d1,a+1)
using this and (2) we have

(x —a)"

n!

F(e) > fla)

Therefore f has a local minimum at a. O



(b)Let n is even and £ (a) < 0.
Let x € (a—d1,a+61), let ¢ be as in (2). This will imply ¢ € (a—d1,a+ 7).
So from (3) we have
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. Further (x—a)™ > 0, as n is even number. Thus, for any = € (a—d1,a+91)
using this and (2) we have

(x —a)"

n!

") < f(a)

Therefore f has a local maximum at a. O
(c) Let n be odd.
Note that (z—a)” > 0 for x > a and (x—a)"” < 0 for z < a. Let f(n)(c) > 0.
Then using (2) f(z) < f(a) for z < a and f(z) > f(a) for z > a. So a is
neither a local maximum nor a local minimum of f. Thus a is an inflection
point at f. O
Question 3: For each of the following indicate whether f(n) = O(g(n)),
f(n) = Qg(n)),f(n) = B(g(n)),f(n) = o(g(n))

(a) f(n)=100n and g(n) = n'!
(g) f(n) = %L and g(n) — n—0.9n
Solution: We say that:

e f(n) = O(g(n)) if there exists Ny € N and ¢ > 0 such that f(n) <
cg(n) for all n > Ny

S~

(n) = Q(g(n)) if there exists Ny € N and ¢ > 0 such that f(n) >
cg(n) for all n > Ny

o f(n) =0(g(n)) if there exists Ny € Nand ¢y, ¢z > 0such that ¢1g(n) <
f(n) < cag(n) for all n > Ny
e f(n) =o0(g(n))if for every ¢ > 0 there exists Ny such that f(n) < cg(n)

for all n > Ny

It is clear that if f(n) = o(g(n)). This immediately implies that f(n) =
O(g(n)) and f(n) # Q(g(n)). Consequently, f(n) # ©(g(n)), Secondly,
if f(n) = O(g(n)) this immediately implies that f(n) = O(g(n)), f(n) =
Q(g(n)) and f(n) # o(g(n).



(a) Let n > 1, f(n) = 100n and g(n) = n''!. Then

f(n) 100

g(n)  not
10
Let € > 0 be given and Ny = { —‘ For all n > Ny,

fn) _

g(m) =

As € > 0 we have f(n) = o(g(n)). O
(g) f(n) = Z; and g(n) = n=%". We can verify using mathematical
induction that for all n > 3.

n! > n"37".

Then for all n > 3,

f(n) 2np0-9n 6 \n
0= g(n)  n! < <n0-1) ’

Let € > 0 be given. For n > 6!, thereisa 0 < < 1

6

—— < 0.
n0-1

Let 6 = 5 +b for some b > 0. Then using Binomial expansion for all n > 1,
(14 b)" > nb. Therefore, for n > 6!, we have

f(n) Ny, 0.9n 1 1
< = o = < =
0= g(n) T (1+b)" — nb
Let No = 1. For all n > Ny
0< M <€
g9(n)
As € > 0 we have f(n) = o(g(n)). O



