Question 2. Suppose that $n \ge 2$, $f : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$ is such that, $f^{(k)}(a) = 0$ for all $k \le n-1$ and $f^{(n)}(a) \ne 0$. If $f^{(n)}(\cdot)$ is continuous at a then show that

- (a) if n is even and $f^{(n)}(a) > 0$ then f has a local minimum at a,
- (b) if n is even and $f^{(n)}(a) < 0$ then f has a local maximum at a,
- (c) if n is odd then f has a point of inflection at a.

Solution: We are given: $n \ge 2$; $f : \mathbb{R} \to \mathbb{R}$; $a \in \mathbb{R}$ such that $f^{(n)}$ is continuous at a;

$$f^{(k)}(a) = 0, \forall k \le n-1; \text{ and } f^{(n)}(a) \ne 0.$$
 (1)

By Taylor's theorem, there exists $\delta > 0$ such that for any $x \in (a - \delta, a + \delta)$, there exists $c \equiv c(x, a)$ that lies between x and a such that

$$f(x) = f(a) + \sum_{k=1}^{n-1} \frac{(x-a)^k}{k!} f^{(k)}(a) + \frac{(x-a)^n}{n!} f^{(n)}(c).$$

From our hypothesis,(1), this implies there exists $\delta > 0$ such that for any $x \in (a - \delta, a + \delta)$, there exists $c \equiv c(x, a)$ that lies between x and a such that

$$f(x) = f(a) + \frac{(x-a)^n}{n!} f^{(n)}(c).$$
 (2)

Now $f^{(n)}$ is continuous at a. Let $\epsilon = \frac{|f^{(n)}(a)|}{2}$ there exists $0 < \delta_1 < \delta$ such that

$$|f^{(n)}(t) - f^{(n)}(a)| < \epsilon \qquad \forall \ t \in (a - \delta_1, a + \delta_1).$$
(3)

(a)Let n is even and $f^{(n)}(a) > 0$.

Let $x \in (a - \delta_1, a + \delta_1)$, let c be as in (2). This will imply $c \in (a - \delta_1, a + \delta_1)$. So from (3) we have

$$|f^{(n)}(c) - f^{(n)}(a)| < \frac{f^{(n)}(a)}{2} \implies f^{(n)}(c) > \frac{f^{(n)}(a)}{2}$$

. Further $(x-a)^n > 0$, as n is even number. Thus, for any $x \in (a-\delta_1, a+\delta_1)$ using this and (2) we have

$$f(x) = f(a) + \frac{(x-a)^n}{n!} f^{(n)}(c) > f(a)$$

Therefore f has a local minimum at a.

(b)Let n is even and $f^{(n)}(a) < 0$.

Let $x \in (a - \delta_1, a + \delta_1)$, let c be as in (2). This will imply $c \in (a - \delta_1, a + \delta_1)$. So from (3) we have

$$|f^{(n)}(c) - f^{(n)}(a)| < \frac{-f^{(n)}(a)}{2} \implies f^{(n)}(c) < \frac{f^{(n)}(a)}{2}$$

. Further $(x-a)^n > 0$, as n is even number. Thus, for any $x \in (a-\delta_1, a+\delta_1)$ using this and (2) we have

$$f(x) = f(a) + \frac{(x-a)^n}{n!} f^{(n)}(c) < f(a)$$

Therefore f has a local maximum at a.

(c) Let n be odd.

Note that $(x-a)^n > 0$ for x > a and $(x-a)^n < 0$ for x < a. Let f(n)(c) > 0. Then using (2) f(x) < f(a) for x < a and f(x) > f(a) for x > a. So a is neither a local maximum nor a local minimum of f. Thus a is an inflection point at f.

Question 3: For each of the following indicate whether f(n) = O(g(n)), $f(n) = \Omega(g(n)), f(n) = \Theta(g(n)), f(n) = o(g(n))$

- (a) f(n) = 100n and $g(n) = n^{1.1}$
- (g) $f(n) = \frac{2^n}{n!}$ and $g(n) = n^{-0.9n}$

Solution: We say that:

- f(n) = O(g(n)) if there exists $N_0 \in \mathbb{N}$ and c > 0 such that $f(n) \leq cg(n)$ for all $n \geq N_0$
- $f(n) = \Omega(g(n))$ if there exists $N_0 \in \mathbb{N}$ and c > 0 such that $f(n) \ge cg(n)$ for all $n \ge N_0$
- $f(n) = \Theta(g(n))$ if there exists $N_0 \in \mathbb{N}$ and $c_1, c_2 > 0$ such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge N_0$
- f(n) = o(g(n)) if for every c > 0 there exists N_0 such that $f(n) \le cg(n)$ for all $n \ge N_0$

It is clear that if f(n) = o(g(n)). This immediately implies that f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$. Consequently, $f(n) \neq \Theta(g(n))$, Secondly, if $f(n) = \Theta(g(n))$ this immediately implies that f(n) = O(g(n)), $f(n) = \Omega(g(n))$ and $f(n) \neq o(g(n))$.

(a) Let $n \ge 1$, f(n) = 100n and $g(n) = n^{1.1}$. Then

$$\frac{f(n)}{g(n)} = \frac{100}{n^{0.1}}$$

Let $\epsilon > 0$ be given and $N_0 = \left[\left(\frac{100}{\epsilon} \right)^{10} \right]$. For all $n \ge N_0$, $0 \le \frac{f(n)}{q(n)} < \epsilon.$

As $\epsilon > 0$ we have f(n) = o(g(n)). \Box (g) $f(n) = \frac{2^n}{n!}$ and $g(n) = n^{-0.9n}$. We can verify using mathematical induction that for all $n \ge 3$.

$$n! \ge n^n 3^{-n}.$$

Then for all $n \geq 3$,

$$0 \le \frac{f(n)}{g(n)} = \frac{2^n n^{0.9n}}{n!} < \left(\frac{6}{n^{0.1}}\right)^n.$$

Let $\epsilon > 0$ be given. For $n \ge 6^{11}$, there is a $0 < \delta < 1$

$$\frac{6}{n^{0.1}} < \delta.$$

Let $\delta = \frac{1}{1+b}$ for some b > 0. Then using Binomial expansion for all $n \ge 1$, $(1+b)^n \ge nb$. Therefore, for $n \ge 6^{11}$, we have

$$0 \le \frac{f(n)}{g(n)} = \frac{2^n n^{0.9n}}{n!} < \delta^n = \frac{1}{(1+b)^n} \le \frac{1}{nb}.$$

Let $N_0 = \frac{1}{b\epsilon}$. For all $n \ge N_0$

$$0 \le \frac{f(n)}{g(n)} < \epsilon.$$

As $\epsilon > 0$ we have f(n) = o(g(n)).

	_