
Question 2. Suppose that n ≥ 2, f : R → R and a ∈ R is such that,
f (k(a) = 0 for all k ≤ n − 1 and f (n)(a) 6= 0. If f (n)(·) is continuous at a
then show that

(a) if n is even and f (n)(a) > 0 then f has a local minimum at a,

(b) if n is even and f (n)(a) < 0 then f has a local maximum at a,

(c) if n is odd then f has a point of inflection at a.

Solution: We are given: n ≥ 2; f : R → R; a ∈ R such that f (n) is
continuous at a;

f (k)(a) = 0, ∀ k ≤ n− 1; and f (n)(a) 6= 0. (1)

By Taylor’s theorem, there exists δ > 0 such that for any x ∈ (a− δ, a+ δ),
there exists c ≡ c(x, a) that lies between x and a such that

f(x) = f(a) +
n−1∑
k=1

(x− a)k

k!
f (k)(a) +

(x− a)n

n!
f (n)(c).

From our hypothesis,(1), this implies there exists δ > 0 such that for any
x ∈ (a−δ, a+δ), there exists c ≡ c(x, a) that lies between x and a such that

f(x) = f(a) +
(x− a)n

n!
f (n)(c). (2)

Now f (n) is continuous at a. Let ε = |f (n)(a)|
2 there exists 0 < δ1 < δ such

that
| f (n)(t)− f (n)(a) |< ε ∀ t ∈ (a− δ1, a+ δ1). (3)

(a)Let n is even and f (n)(a) > 0.
Let x ∈ (a− δ1, a+ δ1), let c be as in (2). This will imply c ∈ (a− δ1, a+ δ1).
So from (3) we have

| f (n)(c)− f (n)(a) |< f (n)(a)

2
=⇒ f (n)(c) >

f (n)(a)

2

. Further (x−a)n > 0, as n is even number. Thus, for any x ∈ (a−δ1, a+δ1)
using this and (2) we have

f(x) = f(a) +
(x− a)n

n!
f (n)(c) > f(a)

Therefore f has a local minimum at a.
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(b)Let n is even and f (n)(a) < 0.
Let x ∈ (a− δ1, a+ δ1), let c be as in (2). This will imply c ∈ (a− δ1, a+ δ1).
So from (3) we have

| f (n)(c)− f (n)(a) |< −f
(n)(a)

2
=⇒ f (n)(c) <

f (n)(a)

2

. Further (x−a)n > 0, as n is even number. Thus, for any x ∈ (a−δ1, a+δ1)
using this and (2) we have

f(x) = f(a) +
(x− a)n

n!
f (n)(c) < f(a)

Therefore f has a local maximum at a.
(c) Let n be odd.

Note that (x−a)n > 0 for x > a and (x−a)n < 0 for x < a. Let f(n)(c) > 0.
Then using (2) f(x) < f(a) for x < a and f(x) > f(a) for x > a. So a is
neither a local maximum nor a local minimum of f . Thus a is an inflection
point at f .

Question 3: For each of the following indicate whether f(n) = O(g(n)),
f(n) = Ω(g(n)),f(n) = Θ(g(n)),f(n) = o(g(n))

(a) f(n) = 100n and g(n) = n1.1

(g) f(n) = 2n

n! and g(n) = n−0.9n

Solution: We say that:

• f(n) = O(g(n)) if there exists N0 ∈ N and c > 0 such that f(n) ≤
cg(n) for all n ≥ N0

• f(n) = Ω(g(n)) if there exists N0 ∈ N and c > 0 such that f(n) ≥
cg(n) for all n ≥ N0

• f(n) = Θ(g(n)) if there existsN0 ∈ N and c1, c2 > 0 such that c1g(n) ≤
f(n) ≤ c2g(n) for all n ≥ N0

• f(n) = o(g(n)) if for every c > 0 there existsN0 such that f(n) ≤ cg(n)
for all n ≥ N0

It is clear that if f(n) = o(g(n)). This immediately implies that f(n) =
O(g(n)) and f(n) 6= Ω(g(n)). Consequently, f(n) 6= Θ(g(n)), Secondly,
if f(n) = Θ(g(n)) this immediately implies that f(n) = O(g(n)), f(n) =
Ω(g(n)) and f(n) 6= o(g(n)).
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(a) Let n ≥ 1, f(n) = 100n and g(n) = n1.1. Then

f(n)

g(n)
=

100

n0.1

Let ε > 0 be given and N0 =

⌈(
100
ε

)10⌉
. For all n ≥ N0,

0 ≤ f(n)

g(n)
< ε.

As ε > 0 we have f(n) = o(g(n)).
(g) f(n) = 2n

n! and g(n) = n−0.9n. We can verify using mathematical
induction that for all n ≥ 3.

n! ≥ nn3−n.

Then for all n ≥ 3,

0 ≤ f(n)

g(n)
=

2nn0.9n

n!
<
( 6

n0.1

)n
.

Let ε > 0 be given. For n ≥ 611, there is a 0 < δ < 1

6

n0.1
< δ.

Let δ = 1
1+b for some b > 0. Then using Binomial expansion for all n ≥ 1,

(1 + b)n ≥ nb. Therefore, for n ≥ 611, we have

0 ≤ f(n)

g(n)
=

2nn0.9n

n!
< δn =

1

(1 + b)n
≤ 1

nb
.

Let N0 = 1
bε . For all n ≥ N0

0 ≤ f(n)

g(n)
< ε.

As ε > 0 we have f(n) = o(g(n)).
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