- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space. Suppose X, Y are independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ and $f : \mathbb{R} \to \mathbb{R}$ be a Borel-measurable function. Show f(X) and f(Y) are also independent.
- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space and $\{Y_n\}$ be a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (a) Show that $E = \{\omega \in \Omega : \exists Y(\omega) s.t. Y_n(\omega) \to Y(\omega) \text{ as } n \to \infty\}$ is a measurable set.
 - (b) Show $\overline{Y} := \limsup_{n \to \infty} Y_n$ is a random variable.
 - (c) Show $\underline{Y} := \liminf_{n \to \infty} Y_n$ is a random variable.

1.