(f) Let $n \to \infty$ and then $K \to \infty$ in (??) to conclude the result (using (??)).

C-12 Probability Theory Semester I 2022/23 Worksheet https://www.isibang.ac.in/~athreya/Teaching/c12

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space. Let $\{X_n\}$ be a sequence of i.i.d. samples on $(\Omega, \mathcal{F}, \mathbb{P})$. Consider $\overline{X_n}$, the empirical mean given by

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

Let for $u \in \mathbb{R}$,

$$s(u) = \sup_{n \ge 1} \frac{1}{n} \log \mathbb{P}(\bar{X}_n \ge u)$$

and for $\lambda \in \mathbb{R}$

$$p(\lambda) = \log E[e^{\lambda X_1}].$$

We shall work in $\mathbb{R} \cup \{-\infty\} \cup \{\infty\}$.

In this worksheet we shall prove the following result on Large Deviation.

Cramérs Theorem: For all $x \in \mathbb{R}$, the sequence

$$\frac{1}{n}\log \mathbb{P}(\bar{X}_n \ge x)$$

converges in $[-\infty, 0]$ and

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\bar{X}_n \ge x) = \inf_{\lambda \ge 0} (\log E[e^{\lambda X_1}] - \lambda x)$$

1. Fix $m \ge 1$, for any $n \ge 1$ let $q_n, 0 \le r_n \le m$ be such that $n = q_n m + r_n$.

(a) Show that

$$\{\bar{X}_n \ge x\} \supset \bigcap_{k=0}^{q_n-1} \left\{ \frac{1}{m} \sum_{i=mk+1}^{m(k+1)} X_i \ge x \right\} \bigcap_{i=mq_n+1}^n \{X_i \ge x\}$$

and conclude that

$$\mathbb{P}(\{\bar{X}_n \ge x\}) \ge \mathbb{P}(\bar{X}_m \ge x)^{q_n} \mathbb{P}(X_1 \ge x)^m.$$

(b) Show that

$$\frac{q_n}{n} \to \frac{1}{m}$$
, as $n \to \infty$.