1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space. Let $\{X_n\}$ be a sequence of i.i.d. samples on $(\Omega, \mathcal{F}, \mathbb{P})$. Consider \bar{X}_n , the empirical mean given by

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

Let for $u \in \mathbb{R}$,

$$s(u) = \sup_{n>1} \frac{1}{n} \log \mathbb{P}(\bar{X}_n \ge u)$$

and for $\lambda \in \mathbb{R}$

$$p(\lambda) = \log E[e^{\lambda X_1}].$$

We shall work in $\mathbb{R} \cup \{-\infty\} \cup \{\infty\}$. In this worksheet we will prove the result: For all $\lambda \geq 0$,

$$p(\lambda) = \sup_{u \in \mathbb{R}} (\lambda u + s(u)) \tag{1}$$

(a) Show (1) for $\lambda = 0$. i.e.

$$\sup_{u \in \mathbb{R}} s(u) = 0 = p(0).$$

(b) Show that

$$P(\{\bar{X}_n > u\}) \le (E[e^{\lambda X_1}])^n e^{-n\lambda u}$$

for $\lambda \geq 0$ and conclude that

$$p(\lambda) \ge \sup_{u \in \mathbb{R}} (\lambda u + s(u)) \tag{2}$$

for all $\lambda > 0$

(c) Show that for K > 0 large enough and any lambda > 0

$$-\lambda K < \sup_{u \in R} (\lambda u + s(u)) \tag{3}$$

(d) Let $\lambda > 0$ and K > 0 prove each of the (in)equalities below:

$$\log E[e^{\lambda X_1} \ 1(|\ X_1| \le K)] \le \frac{1}{n} \log E[e^{n\lambda \bar{X}_n} \ 1(|\ \bar{X}_n| \le K)]$$

$$= \frac{1}{n} \log E\left[\left(e^{-n\lambda K} + \int_{-K}^{\bar{X}_n} e^{n\lambda u} n\lambda du\right) \ 1(|\ \bar{X}_n| \le K)\right]$$

$$\le \frac{1}{n} \log \left(e^{-n\lambda K} + \int_{-\infty}^{\infty} E\left[\ 1(-K \le u \le \bar{X}_n) \ 1(|\ \bar{X}_n| \le K)e^{n\lambda u} n\lambda du\right]\right)$$

$$\le \frac{1}{n} \log \left(e^{-n\lambda K} + \int_{-K}^{K} E\left[e^{n(\lambda u + s(u))} n\lambda du\right]\right)$$

$$(4)$$

(e) Using (??) and (??) show that

$$\log E[e^{\lambda X_1} \ 1(|X_1| \le K)] \le \frac{1}{n} \log(1 + 2Kn\lambda) + \sup_{u \in \mathbb{R}} (\lambda u + s(u))$$
 (5)