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The law of large numbers, not really a law but a mathematical theorem, is
at the same time a justification for application of statistics and an essential tool
for the mathematical theory of probability. As such, it must be taught to many
students. The traditional method for this, using independent and identically
distributed random variables, was developed by Kolmogorov in the 1930’s, and
explains well what happens, and much more, at this level of generality. However,
it has recently come to light that the reason for the validity of this theorem in
its general setting, that of stationarity, is much simpler than was first thought.
In this short article, I shall try to explain to the general audience towards whom
this collection is directed, the essence of the law of large numbers. A complete
treatment should certainly include many references and interesting historical
comments, and I apologize for their absence here.

Let me start with the basic law of large numbers by considering, very simply,
an infinite sequence

x0, x1, x2, . . .

each of whose elements is either 0 or 1. Perhaps it will help (or hinder!) to
think of xn as the result of the nth trial of an uncertain experiment, with xn = 1
designating success and xn = 0 failure. Let

an =
x0 + x1 + . . . + xn−1

n
(n ≥ 1)

denote then the average numbers of successes up to time n. It is very easy to
see mathematically that for some sequences x,

lim
n→∞

an

exists, while for other sequences x, this is not the case. One can only affirm
with certainty that

lim
n→∞

(an+1 − an) = 0,

but nothing impedes the averages an from oscillating more and more slowly as
n grows. Thus it seems that further discussion is useless, and that uncertainty
here must be accepted.

Phenomenologically, however, we are faced with the fact that in certain
situations, such limits seem to exist, and the society makes seemingly under-
standable statements concerning the percentage of smokers dying of cancer, the
probability of rain tomorrow, or an industrial average yield. We are confronted
with the question as to whether nature produces sequences whose averages do
converge, and why. Of course, this is not a mathematical question, and in order
to say something mathematically sensible, one must adopt a model.

The currently accepted model, and it is difficult to see how it could be re-
placed by something else, is that for a given situation in which such sequences x
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appear, in principle all sequences are possible, but there is also a mass distribu-
tion with total mass 1 over the set of sequences, which assigns to each “event”
which might occur a probability, this being the total mass of those sequences for
which the event occurs. If an event, for instance the existence of lim

n→∞
an, has

probability 1, then one says that the event will occur almost surely.
The determination of such a mass distribution in different practical situa-

tions is one of the most important tasks for probabilists, and requires a good
mixture of mathematics, other sciences, and good old common sense. First
principles are of utmost importance, as determining such an object by exper-
imentation resembles very much a cat chasing its own tail! One of the basic
properties of such a mass distribution, already alluded to briefly above, is that
of stationarity. We say that the probability measure (= mass distribution) is
stationary if the events have time-homogeneous probabilities. That is, shifting
any event forwards or backwards in time does not change its probability.

Perhaps a brief remark on mass distributions is in order. There is a branch
of mathematics, measure theory, which deals extensively with the specification
and manipulation of such objects. However, one can understand well most
arguments and principles by using the intuitive notion, which is my intention
here.

Now we can state the

Basic Law of Large Numbers:

If x = (x0, x1, . . .) is a stationary sequence of zeroes and ones, then limn→∞ an

exists almost surely.

Just to be sure that you are (mathematically) still with me: A unit mass
distribution on sequences of zeroes and ones is given; it is stationary. Then
the set of all sequences x for which lim

n→∞
an exists has total mass 1. The set of

sequences for which this limit does not exist has mass 0. Remember, this is a
theorem, and I want to explain the proof.

To understand the proof will require the level of first-year university analysis,
given the intuitive acceptance of the mass distribution notion. We begin by
defining

ā := lim sup
n→∞

an;

this always exists, and 0 ≤ ā ≤ 1. It is also clear that if we had started observing
x at a later time point, the value ā would be the same:

ā = lim sup
n→∞

xk + xk+1 + . . . + xk+n−1

n

for any k ≥ 0 and any sequence x.
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Next, we need a way to measure how close we are to the lim sup, ā. Thus,
let ε > 0 be a fixed positive number, and for each k ≥ 0, define

Nk := min
{

n ≥ 1 :
xk + xk+1 + . . . + xk+n−1

n
≥ ā− ε

}
.

By the definition of lim sup, the set on the right is non-empty and hence Nk is
finite for each k. The crucial point we need to address concerns the size of the
numbers Nk; to make our idea clear, let us examine the simplest case first.

Case 1. Suppose that for each ε > 0 there exists a (large) positive integer M
such that for each k, Nk ≤ M almost surely. (That is, the set of sequences x
for which Nk ≤ M has total mass 1.)

Remark: Note that by our assumption of stationarity the events Nk ≤ M for
different k all have the same probability.

If now x is such a sequence that for each k, Nk ≤ M , we claim that lim
n→∞

an

exists. The idea is that, as n gets larger, an can only change more and more
slowly, and that then wandering is impossible because the lim sup is reached
again and again within M steps. Formally, one proceeds as follows. Fix ε > 0
and choose any n > M/ε. Then starting at the beginning of x, break x up into
pieces of lengths at most M such that the average of x over each piece is at least
ā− ε. Stop at the piece containing the coordinate n. Then it is clear that

x0 + x1 + . . . + xn−1 ≥ (n−M) (ā− ε),

so that
an =

x0 + x1 + . . . + xn−1

n
≥ (1− ε) (ā− ε) ≥ ā− 2ε

for each n > M/ε; it follows that lim
n→∞

an = ā exists.

Remark: Note that only the last piece is of importance; it must not become
too long.

Actually, the same type of argument works in the general case, when com-
bined with an idea coming originally from non-standard analysis.

Case 2: General case. By the remark after Case 1, it remains true that the
events Nk ≤ M all have the same probability, for any k and fixed M . Since Nk

is finite for each x, we may not be able to find an M , for ε > 0 given, such that
these events have probability 1, but we certainly can choose M so large that for
any k, the probability of Nk ≤ M is less than ε.

Fix now such an integer M , given ε > 0. Next, we want to make the same
inequality work for us, but we are impeded whenever Nk > M . So let us change
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x at those places to insure quick arrival at the lim sup.
Namely, define

x∗k :=





xk if Nk ≤ M

(k ≥ 0)

1 if Nk > M.

Then clearly x∗k ≥ xk for each k, so that if we set

N∗
k := min

{
n ≥ 1 :

x∗k + . . . x∗k+n−1

n
≥ ā− ε

}

(same ā), then N∗
k ≤ Nk, and moreover if k is such that

Nk > M,

then we have
N∗

k = 1,

since setting x∗k = 1 insures immediate arrival above ā− ε < 1.
Now we are almost ready. As above, breaking x∗ up into pieces yields for

n > M/ε.
x∗0 + x∗1 + . . . + x∗n−1 ≥ (n−M) (ā− ε),

but now we cannot conclude anything about the sequence x because we have
replaced it by x∗.

Instead, we now need to use our mass distribution to calculate the average
value of each side of the inequality over all sequences x, called by probability
theory the expectation and denoted by E(·). Let

E (x0) =: p

and
E (x∗0) =: p∗;

by stationarity, E (x∗p) = p∗ for all k, and by the choice of M , we have

p∗ ≤ p + ε.

Of course, p is just the probability that xk = 1, and p∗ the probability that
x∗k = 1, for any k. Now, taking expectations of each side of the inequality
results in

n(p + ε) ≥ np∗ ≥ (n−M)(E (ā)− ε) (n ≥ M/ε).
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Now divide by n, send n to infinity and then ε to zero, giving

E (ā) = E (lim sup
n→∞

x0 + . . . + xn−1

n
) ≤ p.

Finally, apply the entire argument above to the “mirrored” 0 − 1−sequence
yk = 1− xk; an easy calculation (exercise!) shows that

E (lim inf
n→∞

x0 + . . . + xn−1

n
) ≥ p.

But for any sequence x, certainly

lim inf
n→∞

x0 + . . . + xn−1

n
≤ lim sup

n→∞
x0 + . . . + xn−1

n
;

it is an elementary fact of expectations or averaging that the three inequalities
then must be equalities, the last one almost surely. Hence lim sup = lim inf
for a set of sequences of total mass one, i.e. the limit exists almost everywhere.
This concludes the proof of the basic law of large numbers.

In concluding, we state without proof that this method can be widely ex-
tended with minor, straight-forward modifications to the most general laws of
large numbers based on stationarity. The above proof should, however, in my
opinion be included in basic probability courses, since it so clearly shows the na-
ture of the interplay of stationarity assumptions and the existence of statistical
limits.
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