## $https://www.isibang.ac.in/\sim athreya/Teaching/c12$

1. Exercise 5.2.18 in [AS08].

**Solution:**  $\{Y_n\}_{n\geq 1}$  are i.i.d random variables uniformly distributed over  $(0,\theta)$ .

Let,  $X_n = \max\{Y_1, Y_2, \dots, Y_n\}$ . Then given  $\epsilon > 0$  we have,

$$\begin{split} \mathbb{P}(|X_n - \theta|| \geq \epsilon) &= \mathbb{P}(X_n \leq \theta - \epsilon \text{ or } X_n \geq \theta + \epsilon) \\ &= \mathbb{P}(X_n \leq \theta - \epsilon) \quad [\text{becasue } X_n \leq \theta \quad \forall n] \\ &= \mathbb{P}(Y_n \leq \theta - \epsilon, 1 \leq k \leq n) \\ &= \prod_{k=1}^n \mathbb{P}(Y_k \leq \theta - \epsilon) \quad [\text{By independence of } Y_k\text{'s}] \\ &= \big(\frac{\theta - \epsilon}{\theta}\big)^n \quad [\text{If } \epsilon \leq \theta. \text{ And if } \epsilon > \theta \text{ this is 0 anyway}] \end{split}$$

But,  $0 \le \frac{\theta - \epsilon}{\theta} < 1$  if  $\epsilon < \theta$ .

Thus,

$$\lim_{n \to \infty} \left( \frac{\theta - \epsilon}{\theta} \right) = 0$$

Then,

$$\lim_{n \to \infty} \mathbb{P}(|X_n - \theta|| \ge \epsilon) = 0.$$

Thus,

$$X_n \stackrel{p}{\to} \theta$$
 as  $n \to \infty$ .

2. Exercise 5.2.21 in [AS08].

**Solution:** Let  $F(x) = \mathbb{P}(Y_n \leq x)$  so that F is the common cumulative distribution function for all the  $Y_n$ 's.

Then,

$$\mathbb{P}(|X_n| \ge \epsilon) = \mathbb{P}(|Y_n| \ge n\epsilon)$$

$$= \mathbb{P}(Y_n \ge n\epsilon \text{ or } Y_n \le -n\epsilon)$$

$$= F(-n\epsilon) + 1 - F(n\epsilon)$$

Now, F satisfies  $\lim_{x \to -\infty} F(x) = 0$  and  $\lim_{x \to \infty} F(x) = 1$ .

Thus, given  $\delta > 0$  choose  $n_{\epsilon_0} \in \mathbb{N}$  so that  $\forall n \geq n_0$  we have

$$F(-n\epsilon) < \frac{\delta}{2} \text{ and } 1 - F(n\epsilon) < \frac{\delta}{2}.$$

Then,  $\forall n \geq n_0$  we have,  $\mathbb{P}(|X_n| \geq \epsilon) < \delta$ .

Thus,  $\lim_{n\to\infty} \mathbb{P}(|X_n| \ge \epsilon) = 0.$ 

Thus,

$$X_n \stackrel{p}{\to} 0.$$

We now do the second part of the problem. As  $X_n \stackrel{p}{\to} 0$  if  $X_n \stackrel{a.e}{\to} Y$  then Y must be 0.

We can construct a random variable  $Z:(\Omega,\mathcal{F},\mathbb{P})\to\mathbb{N}$  such that

$$\mathbb{P}(Z=i) = \frac{i}{i+1}.$$

Then, let  $Y_n$  be i.i.d copies of  $Z \ \forall n \geq 1$ . We have  $X_n = \frac{Y_n}{n} \ \forall n \geq 1$ .

Now,

$$\sum_{n=1}^{\infty} \mathbb{P}(|X_n| \ge 1) = \sum_{n=1}^{\infty} \left[\sum_{k=n}^{\infty} \frac{1}{k(k+1)}\right] = \infty.$$

Thus,  $\mathbb{P}(\underset{n\to\infty}{\lim}X_n=0)\neq 1$  [By Borel Cantelli lemma]

Thus,  $X_n$  does not converge almost everywhere.

6. Exercise 5.5.11 in [Ros06].

**Solution:** Let  $\Omega = [0,1]$  with uniform probability measure. Define  $Y_n : \Omega \to \mathbb{R}$  as follows:

$$Y_{2^{k+1}-2+m} = (2^{k+1}-2+m)I_{\left[\frac{m-1}{2^{k+1}},\frac{m}{2^{k+1}}\right]}$$

with  $k \ge 0$  and  $1 \le m \le 2^{k+1}$ .

Now, given  $\epsilon$ , if  $n > 2^k$  we have,

$$\mathbb{P}(|\frac{Y_n}{n}| \ge \epsilon) \le \frac{1}{2^{k+1}}.$$

Thus, given  $\delta > 0$  choose k with  $\frac{1}{2^{k+1}} < \delta$ . Then, for  $n > 2^k = n_0$  we have,

$$\mathbb{P}(|\frac{Y_n}{n}| \ge \epsilon) < \epsilon.$$

Thus,

$$\lim_{n\to\infty}\mathbb{P}(|\frac{Y_n}{n}|\geq\epsilon)=0.$$

Thus,

$$\frac{Y_n}{n} \stackrel{p}{\to} 0.$$

But, if  $\omega \in \Omega$ , the sequence  $\left\{\frac{Y_n(\omega)}{n}\right\}$  takes the value 1 infinitely often. Thus,  $\frac{Y_n(\omega)}{n}$  can not converge to 0.

So  $\{\omega \in \Omega | \lim_{n \to \infty} \frac{Y_n(\omega)}{n} = 0\}$  implies,

$$\mathbb{P}(\lim_{n\to\infty}\frac{Y_n}{n}=0)=0.$$

So,  $\frac{Y_n}{n}$  does not converge to 0 in probability. But if  $\omega \in \Omega$ , then

 $\frac{Y_n(\omega)}{n^2} \leq \frac{1}{n}$  and hence

$$\lim_{n\to\infty} \frac{Y_n(\omega)}{n^2} = 0.$$

Thus,

$$\{\omega \in \Omega | \lim_{n \to \infty} \frac{Y_n(\omega)}{n^2} = 0\} = \Omega$$

$$\Rightarrow \mathbb{P}(\lim_{n \to \infty} \frac{Y_n}{n^2} = 0) = 1$$

$$\Rightarrow \frac{Y_n}{n^2} \stackrel{a.s}{\to} 0 \text{ as } n \to \infty.$$

8. Exercise 5.5.15 in [Ros06].

Solution of (a): Let  $X_n$ 's be defined on the probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Let  $E_n = X_n^{-1}\{3^n\}, E_n' = X_n^{-1}\{-3^n\}$  then  $X_n = 3^n I_{E_n} - 3^n 1_{E_n'}$ .

Thus.

$$\mathbb{E}[X_n] = 3^n \mathbb{P}(E_n) - 3^n \mathbb{P}(E_n') = 0.$$

Solution of (b):

$$|S_n| = |X_1 + X_2 + \dots + X_n|$$

$$\geq |X_n| - |X_{n-1}| - |X_{n-2}| - \dots - |X_1|$$

$$\geq 3^n - \sum_{k=1}^{n-1} 3^k$$

$$= 3^n - \frac{3^n - 3}{2}$$

$$= \frac{3^n + 3}{2}$$

Thus,

$$\mathbb{P}(|S_n| \ge \frac{3^n + 3}{2}) = 1.$$

But note that,

$$\mathbb{P}(|S_n| = \frac{3^n + 3}{2}) \ge \mathbb{P}(X_n = 3^n, X_{n-1} = -3^{n-1}, X_{n-2} = -3^{n-2}, \dots, X_2 = -3^2, X_1 = -3)$$

$$= \mathbb{P}(X_n = 3^n) \mathbb{P}(X_{n-1} = -3^{n-1}) \dots \mathbb{P}(X_2 = -3^n) \mathbb{P}(X_1 = -3) \text{ [By independence]}$$

$$= \frac{1}{2^n}$$

$$> 0$$

Thus if  $r > \frac{3^n + 3}{2}$  we have,

$$\mathbb{P}(|S_n| \ge r) = 1 - \mathbb{P}(|S_n| < r) < 1.$$

Thus,  $R_n = \frac{3^n + 3}{2}$ .

Solution of (c): We have,  $R_n = \frac{3^n+3}{2}$ . Then,

$$\lim_{n \to \infty} \frac{R_n}{n} = \lim_{n \to \infty} \frac{3^n + 3}{2n}$$
$$= \lim_{n \to \infty} \frac{3^n}{2n}$$
$$= \infty$$

**Solution of (d):** Given  $\epsilon > 0$ , we choose  $n_0$  so that  $\frac{R_n}{n} > \epsilon \ \forall n \geq n_0$ . Then,  $\forall n \geq n_0$  we have,

$$\mathbb{P}(\frac{|S_n|}{n} \ge \epsilon) \le \mathbb{P}(\frac{|S_n|}{n} \ge \frac{R_n}{n}) = 1$$

This implies,

$$\lim_{n\to\infty} \mathbb{P}(\frac{|S_n|}{n} \ge \epsilon) = 1 \neq 0 \quad \forall \epsilon > 0.$$

Solution of (e): The random variables  $\{X_n\}_{n\geq 1}$  are not i.i.d and do not have a uniform bound for the variances or moments. So this does not contradict the laws of large numbers.

 $for\ errors/suggestions/questions\ contact\ Aritra\ Mandal\ arigabubabugmail.com$