Due Date: 24th August 2022, 10pm Problems Due: 3(a), 4,6

- 1. Construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and events $\{A_n\}_{n \ge 1}$ such that $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ but $\mathbb{P}(A_n \text{ occurs i.o.}) < 1$.
- 2. Let $\{X_n\}_{n\geq 1}$ be independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that

$$\mathbb{P}(\lim_{n \to \infty} X_n = 0) = 1$$

if and only if

$$\sum_{n=1}^{\infty} \mathbb{P}(\mid X_n \mid \geq \epsilon) < \infty, \text{ for all } \epsilon > 0.$$

- 3. Let $\{X_n\}_{n\geq 1}$ be independent random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (a) Suppose $X_n \sim \text{Normal}(0, 1)$ then show that $\mathbb{P}(\limsup_{n \to \infty} \frac{X_n}{\sqrt{2\log(n)}} = 1) = 1.$ (b) Suppose $X_n \sim \text{Poisson}(1)$ then show that $\mathbb{P}(\limsup_{n \to \infty} X \frac{\log\log(n)}{\sqrt{2\log(n)}} = 1) = 1.$
 - (b) Suppose $X_n \sim \text{Poisson}(1)$ then show that $\mathbb{P}(\limsup_{n \to \infty} X_n \frac{\log \log(n)}{\log(n)} = 1) = 1.$
- 4. Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers. Suppose $\Omega = \{-1,1\}^{\mathbb{N}}$ along with

$$\sigma(\{\pi_n^{-1}(E): E \subseteq \pi_n(\Omega), n \ge 1\})$$

where $\pi_n : \Omega \to \Omega_n$ denote the projection onto the first *n* coordinates. Suppose $\mathbb{P} : \mathcal{A} \to [0,1]$ given by

$$\mathbb{P}(\{\omega \in \Omega | \pi_n(\omega) = (\tilde{\omega}_1, \tilde{\omega}_2, \dots, \tilde{\omega}_n)\}) = \frac{1}{2^n},$$

for any $(\tilde{\omega}_1, \tilde{\omega}_2, \dots, \tilde{\omega}_n) \in \{-1, 1\}^n$. Show that

$$\mathbb{P}(\{\omega \in \Omega | \sum_{n=1}^{\infty} \omega_n a_n < \infty\}) \in \{0, 1\}.$$

- 5. Let F be a distribution function, namely: F is monotonically non-decreasing - i.e. $x \leq y \Rightarrow F(x) \leq F(y)$, F is right continuous - i.e., $\lim_{y \downarrow x} F(y) = F(x)$, and F satisfies $\lim_{x \to \infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$. Let $\Omega = [0, 1], \mathcal{F} = \mathcal{B}_{[0,1]}$ the Borel- σ algebra on [0, 1], and $\mathbb{P}(dw)$ be the Lebesgue measure. Show that there exists a random variable $X : \Omega \to \mathbb{R}$ such that $\mathbb{P}(X \leq x) = F(x)$.
- 6. (Constructing independent and identically distributed (i.i.d.) sequence of Uniform random variables) Let $\Omega = [0, 1], \mathcal{F} = \mathcal{B}_{[0,1]}$ the Borel- σ algebra on [0, 1], and $\mathbb{P}(dw)$ be the Lebesgue measure. Consider random variables $d_k : [0, 1] \to \mathbb{R}$ with $d_k(\omega)$ being the k-th digit in the binary expansion of ω .
 - (a) Show that $\{d_k\}_{k>1}$ is an i.i.d. Bernoulli $(\frac{1}{2})$ sequence, i.e.

- i. Show that $\mathbb{P}(d_k = 0) = \mathbb{P}(d_k = 1) = \frac{1}{2}$ for all $k \ge 1$.
- ii. Show that $\{d_k\}_{k\geq 1}$ is an independent collection of random variables.
- (b) Show that $U =: \sum_{k=1}^{\infty} \frac{d_k}{2^k}$ is a Uniform [0,1] random variable on $(\Omega, \mathcal{F}, \mathbb{P})$.
- (c) Let $U_k = \sum_{m=1}^{\infty} \frac{d_{2^{k-1}(2^{m-1})}}{2^m}$. Show that $\{U_k\}_{k\geq 1}$ are an i.i.d. sequence of Uniform random variables.
- 7. (Constructing i.i.d. sequence of random variables) Let $\Omega = [0, 1], \mathcal{F} = \mathcal{B}_{[0,1]}$ the Borel- σ algebra on [0, 1], and $\mathbb{P}(dw)$ be the Lebesgue measure. Suppose we are given a probability distribution \mathbb{Q} on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Construct a sequence $\{X_n\}_{n\geq 1}$ of random variables on $\Omega, \mathcal{F}, \mathbb{P}$) such
 - (a) $\{X_n\}_{n\geq 1}$ are independent.
 - (b) $\mathbb{P}(X_n \in A) = \mathbb{Q}(A)$, for all $A \in \mathcal{B}_{\mathbb{R}}$

References

[Ros06] Jeffrey S Rosenthal. First Look At Rigorous Probability Theory, A. World Scientific Publishing Company, 2006.