- 2. Let $\Omega = \{1, 2, 3, 4\}$, with \mathcal{F} the collection of all subsets of Ω . Let \mathbb{P} and \mathbb{Q} be two probability measures on \mathcal{F} , such that $\mathbb{P}\{1\} = \mathbb{P}\{2\} = \mathbb{P}\{3\} = \mathbb{P}\{4\} = \frac{1}{4}$ and $\mathbb{Q}\{2\} = \mathbb{Q}\{4\} = \frac{1}{2}$ extends to \mathcal{F} by linearity. Finally, let $\mathcal{J} = \{\emptyset, \Omega, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\}$.
 - a. Prove that $\mathbb{P}(A) = \mathbb{Q}(A)$ for all $A \in \mathcal{J}$. **Solution :** $\mathbb{P}\{1\} = \mathbb{P}\{2\} = \mathbb{P}\{3\} = \mathbb{P}\{4\} = \frac{1}{4} \text{ and } \mathbb{Q}\{2\} = \mathbb{Q}\{4\} = \frac{1}{2}$. Thus $\mathbb{Q}\{2,4\} = \frac{1}{2} + \frac{1}{2} = 1$ $\Rightarrow \mathbb{Q}(\Omega - \{2,4\}) = 1 - 1 = 0$ $\Rightarrow \{1\} = \mathbb{Q}\{3\} = 0$. $\mathcal{J} = \{\phi, \Omega, \{1,2\}, \{2,3\}, \{3,4\}, \{1,4\}\}$ $\mathbb{P}(\emptyset) = \mathbb{Q}(\emptyset) = 0 \text{ and } \mathbb{P}(\Omega) = \mathbb{Q}(\Omega) = 1$ $\mathbb{P}\{1,2\} = \mathbb{P}\{1\} + \mathbb{P}\{2\} = \frac{1}{2} \text{ and } \mathbb{Q}\{1,2\} = \mathbb{Q}\{1\} + \mathbb{Q}\{2\} = \frac{1}{2}$. $\mathbb{P}\{2,3\} = \mathbb{P}\{2\} + \mathbb{P}\{3\} = \frac{1}{2} \text{ and } \mathbb{Q}\{2,3\} = \mathbb{Q}\{2\} + \mathbb{Q}\{3\} = \frac{1}{2}$ $\mathbb{P}\{3,4\} = \mathbb{P}\{3\} + \mathbb{P}\{4\} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ $\mathbb{Q}\{3,4\} = \mathbb{Q}\{3\} + \mathbb{Q}\{4\} = 0 + \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{4}$ Similarly, $\mathbb{P}\{1,4\} = Q\{1,4\} = \frac{1}{2}$ Thus, $\mathbb{P}(A) = Q(A) = \frac{1}{2} \forall A \in \mathcal{J}$.
 - b. Prove that there is $A \in \sigma(\mathcal{J})$ with $\mathbb{P}(A) \neq \mathbb{Q}(A)$. **Solution :** Obviously, $\{1, 2, 3\} = \{1, 2\} \cup \{2, 3\} \in \sigma(\mathcal{J})$ But $\mathbb{P}\{1, 2, 3\} = \frac{3}{4}$ whereas $\mathbb{Q}(\{1, 2, 3\} = \frac{1}{2})$. Thus, $\mathbb{P}\{1, 2, 3\} \neq \mathbb{Q}\{1, 2, 3\}$.
 - c. Why does this not contradict Proposition 2.5.8?
 Solution : J is not a semi-algebra as it is not closed under finite intersection.
 {2,3} ∈ J and {1,2} ∈ J.
 But, {1,2} ∩ {2,3} = {2} ∉ J.
 So it does not contradict 2.5.8.
- 4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the uniform distribution on $\Omega = \{1, 2, 3\}$, as in Example 2.2.2. Give an example of a sequence $A_1, A_2, \ldots \in \mathcal{F}$ such that

$$\mathbb{P}(\liminf_{n} A_{n}) < \liminf_{n} \mathbb{P}(A_{n}) < \lim_{n} \sup_{n} \mathbb{P}(A_{n}) < \mathbb{P}(\lim_{n} \sup_{n} A_{n}).$$

Solution : Let $A_{2k} = \{2,3\}$ and $A_{\{2k-1\}} = \{1\} \ \forall k \in \mathbb{N}$. Then $\mathbb{P}(\liminf_n A_n = \mathbb{P}(\bigcup_{\substack{n \ k \ge n}} A_k) = \mathbb{P}(\emptyset) = 0$. $\mathbb{P}(\limsup_n A_n) = \mathbb{P}(\bigcap_{\substack{n \ k \ge n}} A_k) = \mathbb{P}\{1,2,3\} = 1$. But, $\liminf_n \mathbb{P}(A_n) = \frac{1}{3}$ and $\limsup_n \mathbb{P}(A_n) = \frac{2}{3}$. Because,

$$\mathbb{P}(A_n) = \begin{cases} \frac{1}{3} & \text{if n is odd} \\ \frac{2}{3} & \text{if n is even.} \end{cases}$$

Thus, $\mathbb{P}(\liminf_{n} A_n) < \liminf_{n} \mathbb{P}(A_n) < \limsup_{n} \mathbb{P}(A_n) < \mathbb{P}(\limsup_{n} A_n).$

5. Let X be a random variable with $\mathbb{P}(X > 0) > 0$. Prove that there is $\delta > 0$ such that $\mathbb{P}(X \ge \delta) > 0$.[Hint: Do not forget continuity of probabilities]

Solution : Let $A_n = \{X \in [\frac{1}{n}, \infty)\}$ then $A_n \subset A_{n+1} \ \forall n \ge 1$ and so

$$\mathbb{P}(\cup_{n\geq 1}A_n) = \lim_{n\to\infty} \mathbb{P}(A_n)$$
$$\Rightarrow \lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(X>0) > 0.$$

Thus, $\exists n \text{ with } \mathbb{P}(A_n) > 0 \Rightarrow \mathbb{P}(X \ge \frac{1}{n}) > 0.$ Taking $0 \le \delta \le \frac{1}{n}$ we get $\mathbb{P}(X \ge \delta) > 0.$

for errors/suggestions/questions contact Aritra Mandal arigabubabugmail.com