Due Date: October 26th 2022, 10pm

Problems Due: 1 b(iii), 3(a), 3(b), 6

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space. Consider two independent random variables X, Y on $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (a) Show that the distribution of X + Y is given by the convolution of the distributions of X and Y. That is if $\mathbb{Q}(\cdot) = \mathbb{P} \circ (X+Y)^{-1}(\cdot)$, $\mathbb{P}_X(\cdot) = \mathbb{P} \circ X^{-1}(\cdot)$ and $\mathbb{P}_Y(\cdot) = \mathbb{P} \circ Y^{-1}(\cdot)$ then

$$\mathbb{Q}(A) = \int_{\mathbb{R}} \mathbb{P}_X(A - y) d\mathbb{P}_Y(dy),$$

for all Borel sets A, with $A - y = \{z \in \mathbb{R} : z + y \in A\}.$

- (b) Compute the distribution of X + Y when
 - i. $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$
 - ii. $X \sim \text{Normal}(a, u)$ and $Y \sim \text{Normal}(b, v)$
 - iii. $X \sim \text{Gamma}(\alpha, \beta)$ and $Y \sim \text{Gamma}(\eta, \beta)$
- 2. Let a closed set F and $\epsilon > 0$ be given. Show that there is a function uniformly continuous $f : \mathbb{R} \to [0, 1]$ such that

$$f(x) = \begin{cases} 1 & \text{if } x \in F \\ 0 & \text{if } d(x, F) > \epsilon \end{cases}$$

- 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space. Suppose $\{X_n\}_{n\geq 1}$, X are random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose $X_n \xrightarrow{d} X$ or X_n converges in distribution to X (i.e. $\mathbb{P} \circ X_n^{-1}$ converges weakly to $\mathbb{P} \circ X^{-1}$).
 - (a) Ex 5.2.11 in **AS08**
 - (b) Ex 5.2.19 in **AS08**
 - (c) Ex 5.2.23 in [AS08]
- 4. Ex 10.3.1 in Ros06
- 5. Ex 10.3.3 in Ros06
- 6. Ex 10.3.4 in Ros06

References

- [AS08] Siva Athreya and Viakalathur Shankar Sunder. *Measure & probability*. Universities Press, 2008.
- [Ros06] Jeffrey S Rosenthal. First Look At Rigorous Probability Theory, A. World Scientific Publishing Company, 2006.