1 F is a closed set. Let $\delta>0.$

$$\begin{split} F_{\delta} &= \{x \in \mathbb{R} : d(x,F) \leq \delta\}.\\ \text{Let } x \in \partial F_{\delta}, \text{ then } \exists \text{ a sequence } \{z_n\}_{n \in \mathbb{N}} \text{ in } F_{\delta} \text{ such that } z_n \to x \text{ as } n \to \infty.\\ \text{Let } y \in F, \text{ and } \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } d(x,z_n) < \epsilon \ \forall n \geq N.\\ \text{Now for } n \geq N, \end{split}$$

$$d(x,y) \le d(x,z_n) + d(z_n,y) < \epsilon + \delta$$

Since $\epsilon > 0$ was arbitrary, we have $d(x, y) \leq \delta$. Since $y \in F$ was arbitrary, we have,

$$\begin{aligned} &d(x,y) \leq \delta \quad \forall y \in F \\ &\Rightarrow d(x,F) = \inf \left\{ d(x,y) : y \in F \right\} \leq \delta \\ &\Rightarrow x \in F_{\delta} \end{aligned}$$

Now suppose $d(x, F) < \delta$, then $\exists y_0 \in F$ such that $d(x, y_0) = a < \delta$. Define

$$U = \{ z \in \mathbb{R} : d(x, z)$$

then U is a open set around x. Let $z \in U$, then

$$d(z, y) \le d(z, x) + d(x, y)$$

This implies $d(z, F) \leq \delta$.

Since $z \in U$ was arbitrary, this implies $U \subset F_{\delta}$, which contradicts the fact that $x \in \partial F_{\delta}$. Therefore for $x \in \partial F_{\delta}$ we must have $d(x, F) = \delta$. So,

$$\partial F_{\delta} \subset \{x \in \mathbb{R} : d(x, F) = \delta\}.$$

Now suppose there are uncountably many $\delta's$ such that

$$\mathbb{P}(\{x \in \mathbb{R} : d(x, F) = \delta\}) > 0.$$

Define

$$E^{\delta} = \{ x \in \mathbb{R} : d(x, F) = \delta \}$$

and

$$A = \{\delta > 0 : \mathbb{P}(E^{\delta}) > 0\}.$$

 $E^{\delta_1}\cap E^{\delta_2}=\phi$ since d(x,F) cannot take both values δ_1 and δ_2 by definition. Define

$$A_n = \{\delta \in A : \mathbb{P}(E^{\delta}) > \frac{1}{n}\}.$$

Let $\delta_1, \delta_2, \ldots, \delta_k \in A_n$ then

$$\mathbb{P}(E^{\delta_1} \cup E^{\delta_2} \cup \ldots \cup E^{\delta_k}) = \sum_{i=1}^k \mathbb{P}(E^{\delta_i}) > \frac{k}{n}.$$

Since $\mathbb{P}(\mathbb{R}) = 1 \Rightarrow A_n$ can have at most n-1 elements.

Then $A_n \subset A$ and for any $\delta \in A$, $\exists N$ such that $\mathbb{P}(E^{\delta}) > \frac{1}{N}$ which implies that $\delta \in A_N$ for some $N \in \mathbb{N}$.

So,

$$A = \underset{n \in \mathbb{N}}{\cup} A_n$$

Each A_n has finitely many elements and the union of countably many finite sets is countable. Hence A is countable.

3. Let $\{X_n\}_{n\geq 1}$ is a sequence of random variables such that $X_n \xrightarrow{d} X$. We write $F_n = F_{X_n}$ as the cdf of X_n . And, $F = F_X$ as the cdf of X. We have $\Omega = [0, 1], \mathcal{B} = \mathcal{B}_{[0,1]}$ and \mathbb{P} = Lebesgue measure on [0,1].

$$Y_n(\omega) = \inf\{x \in \mathbb{R} : \omega \le F_n(x)\}\$$

and

$$Y(\omega) = \inf\{x \in \mathbb{R} : \omega \le F(x)\}.$$

We know that $F_Y = F$ and $F_{Y_n} = F_n$.

Let $\omega \in \Omega$ and let $\omega_0 \in \Omega$ be such that $\omega < \omega_0$. Let $\delta > 0$ be such that $b = Y(\omega_0) + \delta$ is a continuity point of F. So

$$\begin{split} Y(\omega_0) < b \Rightarrow F(b) \ge \omega_0 \\ \Rightarrow \exists m_2 \in \mathbb{N} \text{ such that } F_n(b) \ge w_0 - \delta \quad \forall n \ge m_2[\text{ because } X_n \xrightarrow{d} X] \\ \Rightarrow \exists m_2 \in \mathbb{N} \text{ such that } Y_n(\omega_0 - \delta) \le b \quad \forall n \ge m_2 \end{split}$$

Then we have,

$$\limsup_{n \to \infty} Y_n(\omega_0 - \delta) \le b = Y(\omega_0) + \delta \tag{1}$$

We further restrict δ to the interval $(0, \omega_0 - \omega)$.

For any $\omega_1, \omega_2 \in \Omega$ such that $\omega_1 < \omega_2$, if x satisfies $F_n(x) \ge \omega_2$ then $F_n(x) \ge \omega_1$.

Thus implies, $Y_n(\omega_1) \leq Y_n(\omega_2)$. So Y_n is increasing function on Ω .

From (1) and using the fact that $\delta < \omega_0 - \omega$ and Y_n 's are increasing function on Ω we get,

$$\limsup_{n \to \infty} Y_n(\omega) \le Y(\omega_0) + \delta$$

Now we take a sequence of δ_n in the interval $(0, \omega_0 - \omega)$ such that

 $Y(\omega_0) + \delta_n$ were continuity points of F and $\delta \to 0$ as $n \to \infty$,

$$\limsup_{n \to \infty} Y_n(\omega) \le Y(\omega_0).$$

We have established that for any $\omega, \omega_0 \in \Omega$ such that $\omega < \omega_0$, the above results holds.

If ω is a continuity point of Y, we then allow ω_0 to decrease to ω , we get

$$\limsup_{n \to \infty} Y_n(\omega) \le Y(\omega)$$

.

For any $\omega_1, \omega_2 \in \Omega$ with $\omega_1 < omega_2$ if x satisfies $\omega_2 \leq F(x)$ then $\omega_1 \leq F(x)$. So,

$$\{x \in \mathbb{R} : \omega_1 \le F(x)\} \subset \{\mu \in \mathbb{R} : \omega_2 \le F(x)\}.$$

Taking infimum on both side, we get,

$$Y(\omega_1) \le Y(\omega_2).$$

So, Y is increasing function.

This implies, Y has countably many discontinuities.

9. $\{X_n\}_{n\geq 1}, X$ are random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $X_n \xrightarrow{p} X$ as $n \to \infty$. Let $\epsilon > 0$, let for $t \in \mathbb{R}, F_{X_n}(t) = \mathbb{P}(X_n \leq t)$ and $F_X(t) = \mathbb{P}(X \leq t)$.

$$F_{X_n}(t) = \mathbb{P}(X_n \le t)$$

$$= \mathbb{P}(X_n \le t, |X_n - X| > \epsilon) + \mathbb{P}(X_n \le t, |X_n - X| \le \epsilon)$$

$$\le \mathbb{P}(|X_n - X| > \epsilon) + \mathbb{P}(X_n \le t, |X_n - X| \le \epsilon)$$

$$\le \mathbb{P}(|X_n - X| > \epsilon) + \mathbb{P}(X \le t + \epsilon)$$

$$= \mathbb{P}(|X_n - X| > \epsilon) + F_X(t + \epsilon)$$
(2)

Similarly we can show,

$$F_X(t-\epsilon) \le \mathbb{P}(|X_n - X| \ge \epsilon) + F_{X_n}(t).$$

Then,

$$F_{X_n}(t) \ge F_X(t-\epsilon) - \mathbb{P}(|X_n - X| \ge \epsilon.$$
(3)

From (2) we get,

$$\limsup_{n \to \infty} F_{X_n}(t) \le \limsup_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) + F_X(t + \epsilon)$$

and from (3) we get,

$$\liminf_{n \to \infty} F_{X_n}(t) \ge F_X(t-\epsilon) - \liminf_{n \to \infty} \mathbb{P}(|X_n - X| \ge \epsilon).$$

We have, $X_n \xrightarrow{p} X$ as $n \to \infty$.

then

This implies,

$$\limsup_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0 \text{ and } \liminf_{n \to \infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0.$$

So we get,

$$\limsup_{n \to \infty} F_{X_n}(t) \le F_X(t+\epsilon) \text{ and } \liminf_{n \to \infty} F_{X_n}(t) \ge F_X(t-\epsilon).$$

If t is continuity point of F, then letting $\epsilon \to 0$, we get,

$$\limsup_{n \to \infty} F_{X_n}(t) \le F_X(t) \le \liminf_{n \to \infty} F_{X_n}(t).$$

This implies,

$$\lim_{n \to \infty} F_{X_n}(t) = F_X(t)$$

when t is a continuity point.