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Monotone Convergence Theorem on (⌦,B, µ)

If f , fn non-negative measurable and fn(!) % f (!), 8! 2 ⌦, then

Z
fdµ = sup

n

Z
fndµ = lim

n!1

Z
fndµ .
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Domintated Convergence Theorem on (⌦,B, µ)

Let {fn}1n=1 be a sequence of integrable functions, which is

uniformly dominated by an integrable function : i.e. suppose there

exists integrable g such that |fn(!)|  g(!) 8! 2, 8n.

If fn(!) ! f (!) 8! 2 ⌦, then

f is integrable and lim
n!1

Z
fndµ =

Z
fdµ.
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Fatou’s Lemma

If {fn : n = 1, 2, · · · } is any sequence of non-negative measurable

functions, then
Z

lim inf
n!1

fndµ  lim inf
n!1

Z
fndµ .
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Fubini’s Theorem

Let (⌦,B, µ) denote the product of the �-finite measure spaces

(⌦1,B1, µ1) and (⌦2,B2, µ2). Let f be integrable on (⌦,B, µ).
Then,
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Fubini’s Theorem

(i) for µ1-almost all x in ⌦1, the function

f x : ⌦2 ! C given by f x(y) = f (x , y)

is (B2,BC)-measurable and in fact f x 2 L1(⌦2,B2, µ2);

(i)0 for µ2-almost all y in ⌦2, the function

fy : ⌦1 ! C f y (x) = f (x , y)

is (B1,BC)-measurable and in fact fy 2 L1(⌦1,B1, µ1);

>
In this class : 0=43



Fubini’s Theorem

(ii) the µ1-almost everywhere defined function

x !
Z

f x(y)dµ2(y)

is (B1,BC)-measurable and in fact it is integrable with respect to

µ1;

(ii)0 the µ2-almost everywhere defined function

y !
Z

fy (x)dµ1(x)

is (B2,BC)-measurable and in fact it is integrable with respect to

µ2; and
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Fubini’s Theorem

(iii)

Z

⌦
fdµ =

Z

⌦1

✓Z

⌦2

f (x , y)dµ2(y)

◆
dµ1(x)

=

Z

⌦2

✓Z

⌦1

f (x , y)dµ1(x)

◆
dµ2(y).
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Till now : - Basics in [ Measure Theoretic) Probability

- Integration - Expectation / variance

- limit theorems [ Bord Cartelli / WLLN ]

= Fatou's lemma
,

D- CT ,

,
h- c.T .

,
Fubini

- Moment generating functions I Cbern - It bound

FOCUS :

① ° Large Deviations Principle CLDP) . . . - ( new )

②✓ strong law of large numbers . - -

③✓ Central limit theorem . ~> [ Stein 's Method]

15 . Large Deviation Principle CLDP)

Many questions in Probability can be formulated

as a law of large numbers

Exarch:| : - ¢ , 7.D) - A c- 7 event

- independent trials & Xn =-1 if A coccus

(n )
0 otherwise

In : ✗ it✗ c- - + ✗ n

n

= (elative beguines ogA)n

Application of Tschebycheu :
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◦ Deviations from this typical behaviour

E. 7- PC In > µ + e) ≤ expl-ni.rs
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Question : : - Is there a limit :

I log IPC In > meet > ?
5

as n→ -

Example 2 :C Equilibrium Statistical Mechanics)

- [Model] in which each state has a

certain energy

- Equilibrium - states with lower energy an

likely to occur .

Model : _ Gibbs measure .

Countable
E- set of states

, p
>o ;

H : F-→R is

the energy functions.
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Pp ( Int ) = e- PI
'" ' [ Assign .

*/ → : . higher

Probabilist]where I (a) =
He" -109} to tour

e- energy

state]

Intuitively : Most Probable state is the

one where It takes its minimum .

LDP - are probability measures that behave

like *) and p → • as E- → • ?

Example 3 :-
✗ i =D Bernoulli ( t) i≥ '

& each Xi 's are independent .
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Ex : § is the unique minima of Ic. ]

@ Lw) In S, → b as n→• in Probability

so = @ a) is

Atp , LDP = exponentially rare event:
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Theorem [ CRAMER'S Theorem] - [HMM - Dec 2011]

Cert - Petit
let

>

{Xn}n
≥ ,

be a sequence of independent & identically

distributed random variables and

In = Xitˢ
Assume E[eᵗ "] <• it 1- c-B

°

In log CPC Is >a) > a real number
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Proof : -
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◦ Convergence : In log CPC Is 7N ) converso to SCX )
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