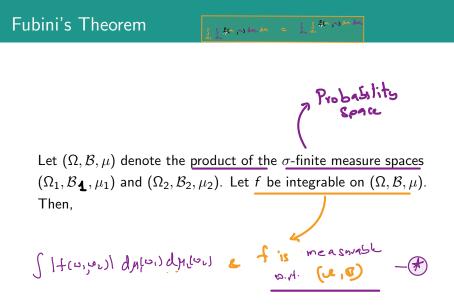
Probability	
(2,7,P) - Probability	space
X: N->R - randon ve E(x) = JxdP. []	mabe
$E(x) = \int x dP = CT$	ntegration
	Ricman Integration
$\int f(x) dx = F(b) - F(a)$	- Upper Suns 7 grea" - lower suns J Under Thu Curve
a = F'(m) = f(m)	
	E (C 4, 5)
Theorem: f: [9,15] -ITR bound Riemann integrable	
Set of discontinuities of lebes gue measure o.	f has
lebes gue measure o.	
Meuren: (fundamental Theoren	of Integral Calculus)
fere	st = t
F(b) - F(a) =	jt frandre

Monotone Convergence Theorem on $(\Omega, \mathcal{B}, \mu)$

If f, f_n non-negative measurable and $f_n(\omega) \nearrow f(\omega), \forall \omega \in \Omega$, then $\int f d\mu = \sup_n \int f_n d\mu = \lim_{n \to \infty} \int f_n d\mu .$ $P \cdot Sc \quad (A) \quad P \cdot Sc \quad (A) \quad$


Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of integrable functions, which is uniformly dominated by an integrable function : i.e. suppose there exists integrable g such that $|f_n(\omega)| \leq g(\omega) \quad \forall \omega \in, \forall n$.

If
$$f_n(\omega) \to f(\omega) \quad \forall \omega \in \Omega$$
, then

$$f$$
 is integrable and $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$.

If $\{f_n: n=1,2,\cdots\}$ is any sequence of non-negative measurable functions, then

$$\int \liminf_{n\to\infty} f_n d\mu \leq \liminf_{n\to\infty} \int f_n d\mu \; .$$

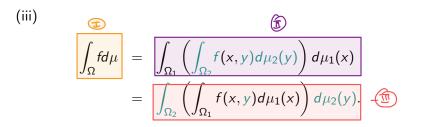
(i) for
$$\mu_1$$
-almost all x in Ω_1 , the function
 $f^{\times}: \Omega_2 \to \mathbb{C}$ given by $f^{\times}(y) = f(x, y)$

is $(\mathcal{B}_2, \mathcal{B}_{\mathbb{C}})$ -measurable and in fact $f^{\times} \in L^1(\Omega_2, \mathcal{B}_2, \mu_2)$; (i)' for μ_2 -almost all y in Ω_2 , the function

$$f_y: \Omega_1 \to \mathbb{C} f^y(x) = f(x, y)$$

is $(\mathcal{B}_1, \mathcal{B}_{\mathbb{C}})$ -measurable and in fact $f_y \in L^1(\Omega_1, \mathcal{B}_1, \mu_1)$;

(ii) the μ_1 -almost everywhere defined function


$$x \stackrel{{\scriptstyle {\scriptstyle \bullet}}}{\rightarrow} \int f^{x}(y) d\mu_{2}(y)$$

is $(\mathcal{B}_1, \mathcal{B}_{\mathbb{C}})$ -measurable and in fact it is integrable with respect to $\mu_1; \qquad \int \log x d\mu_1(x) d\mu_2(x)$

(ii)' the μ_2 -almost everywhere defined function

$$y \xrightarrow{h} \int f_y(x) d\mu_1(x)$$

is $(\mathcal{B}_2, \mathcal{B}_{\mathbb{C}})$ -measurable and in fact it is integrable with respect to μ_2 ; and \dots $\mathfrak{h}_2(\mathfrak{h}) \mathfrak{d}_{\mu_2}(\mathfrak{h}) \mathfrak{d}_{\mathfrak{h}}$

<u>Till now</u> : Basics in (Measure Theoretic) Probability - Integration - Expectation I Nañance - limit Theoremy [Bood cartellin / WLLN] - Fatous lemma, D.C.T., N.C.T., Fubini - Moment generating functions (Chernoft bounds
(j. Large Deviations Principle (200) (new)
€ VStrong law of large num bers
3 (entral limit mearen. ~ [stein's Melhod]
15. Large Deviation Principle (LDP) Many questions is Probability can be formulated as a law of large numbers
Example 1:- (r, 7, P) - A E 7 event
- independent trials E $X_n = 1$ of A occars (n) o otherwise
$X_n: \frac{X_1 + X_2 + X_n}{n} = (\text{relative for quants of } A)_n$
Application of Tschebychev: (WILP) $M = P(A)$ $\overline{X}_{n} \xrightarrow{b} M \xrightarrow{a} n \xrightarrow{b}$

. Deviations from this typical behaviour
E_{70} $\mathbb{P}(X_{n} \supset M + E) \leq e_{xpl-n(, x)}$
7 820 E(E ^{tXI}) 200 t e (-8,8) bounds
Question: - is litere a limit:
$\int \log \left(\mathbb{P}(\overline{X}_n > \mu + \varepsilon) \right) \longrightarrow ?$
Example 2. (Equilibrium Statistical Mechanics)
- [Model] is which each state has a
Certain enersy
- Equilibrium - states will lover energy are
likely to occur.
Model : - Gibbs measure.
Countrable
The energy functions a H(x)
where $Z_{\mathcal{B}} := \sum_{\mathcal{X} \in \mathcal{E}} \mathcal{E}^{\mathcal{H}(\mathcal{X})}$

$\begin{array}{lllllll} (f=1) \rightarrow & P_{\beta} (\{x\}) = \overline{e} & \mathcal{F}(x) & \mathcal{F}_{sbabilils} \\ & \text{where } T(x) = \frac{H(x) - \log 2_{\beta}}{e} & \frac{P_{sbabilils}}{e} \\ & \text{where } T(x) = \frac{H(x) - \log 2_{\beta}}{e} & \frac{P_{sbabilils}}{e} \end{array}$
Intuitively: Most Probable state 5 lise One where H falkes its minimum.
LDP - are probability neasure list behave (ite (4) and $\beta \rightarrow \alpha$ $E \rightarrow \alpha$?
Example 3:- Xi de Bernoulli (\$) i=1 & each Xi 1: are inde pendent.
• $E[X_i] = \oint Var [X_i] = p(1-p)$ $S_n = \sum_{i=1}^{n} X_i \sim Binomial(n, p)$
$\mathbb{P}(S_n = k) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} p^{k} ((-p)^{n-k} k = 0, 1, \dots)$
By stilling's approximation $P(S_n = k) = (\binom{n}{k}) p^k ((1-p)^{n-k} = \frac{n!}{k!} p^k ((1-p)^{n-k})$

• $C \times p \begin{pmatrix} n \log n - k \log k & - k \log k \\ - (n - k) \log (n - k) \\ + (n - k) \log (1 - p) \end{pmatrix}$ $\stackrel{\sim}{=} \int \frac{n}{2\pi} \int \frac{1}{2(1-1)} \log(n-1)$ $\sqrt{\frac{n}{2\pi}} exp\left(n\left(\frac{k}{n}\log p + (1-\frac{k}{n})\log(1-p)\right) - \frac{k}{n}\log(1-\frac{k}{n})\right)$ K = [na] $\left(P\left(S_{n} = [nn] \right) = \left(\bigcap_{n \in \mathbb{Z}} \right) \stackrel{(nn)}{=} \left(\bigcap_{n \in$ let x E Co,1] $= \int \left[\sum_{2TI nx(1-x)} e_{Y_0}(-n T(x) + O(\log n)) \right]$ $C_{\chi\rho}(-\Lambda I(x) + O(\log n))$ $\frac{E_{\text{olwey}}}{\int (x)} = \chi \log \left(\frac{x}{p} \right) + \left(\left(-x \right) \log \left(\frac{(1-x)}{1-p} \right) - \left(\frac{x}{p} \right) \right)$ $\frac{1}{n}\log \mathcal{O}(S_n = \mathcal{D}(n)) \longrightarrow -\mathcal{I}(n) - (LDP)$ $\mathbb{T}(b) = 0 = \frac{\mathbb{T}(b)}{\mathbb{T}(b)} = \frac{1}{\mathbb{T}(b)} \geq 0$ I given by (*x)

	þ ö				
	-) <u>'</u> S, ·				
	λ≠ρ ,	lol =	So = 6 exponen	etidly	raic evict.
Ex:-	<u>]</u> Tau	la expans	ion of I	(·) a round	۶ ۱، ۰. ۰. ۲
	(P(Sn =	[0x]) J	<u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u>	- - 1-0	⁵ Τ _μ (b) λ _Γ
	λ =	p + <u>v</u> Tr		(Centro Theo	y limt
b = z	I (x) =	logz +	· · · · · · · · · · · · · · · · · · ·	(۱-۲۱) اوع د (۲۰۱۰ - ۲۰۱۰)	(1- 2 -)
	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	· · · · · <u>· ·</u> · · · · · · · ·	· · · · · · ·	۱ ۶ کړ	<u>بر (</u>	
	(P(S.	= (nr))	= 0 x ^	、	· · · · · · · · · · · · · · · · · · ·
	© (),) <u>- (nr</u>))			

Theorem [CRAMER'S Theorem) ~ [AMM - Dec 2011] Cert - Petit
let (XnJ nz, be a sequence of independent & identically
distributed random variables and
$\overline{\chi}_{0} = \overline{\chi_{1+\cdots+\chi_{0}}}$
Assume E[[tri] Lo + tell
• $1 \log (P(\overline{X}_n \ge x)) \longrightarrow a real number n \rightarrow $
$\lim_{n \to a} \int \log P(x_n > x) = \inf (\log E[e_n] - \lambda x)$
$P_{100}f: -$ $4 \times c \in \mathbb{R} S(x) = \sup_{\substack{x \neq x = 1 \\ n \neq x = 1}} \log \mathbb{P}(\overline{x_n} \neq x)$
4 XER p(X) = 103 EEXX1]
$\frac{Duality}{dt} = p(x) = \sup_{u \in \mathbb{R}} (\lambda u + s(u))$
· (log P(To ZZ) (unverso to SZ) a nor to SZ